Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы получения материалов высокой чистоты

    В настоящее время в мировой промышленности существуют четыре метода производства полиэтилена. Один метод при высоком давлении и три — при низком давлении. Полиэтилен высокого давления (ПЭВД) имеет целый ряд преимуществ по применению в тех областях, где требуется высокая прозрачность и чистота материала, поскольку не содержит остатков катализатора. Здесь рассматривается один из возможных способов получения ПЭВД. Одним из основных элементов технологической схемы непрерывной полимеризации этилена при высоком давлении является химический реактор. Подлежащий полимеризации газ после предварительной обработки поступает в химический реактор с мешалкой при температуре 30-50 °С. В качестве инициатора полимеризации этилена при высоком давлении используют молекулярный кислород. Процесс полимеризации очень чувствителен к концентрации кислорода, поэтому дозирование кислорода должно быть стабильным. В результате реакции выделяется большое количество теплоты и в реакторе устанавливается относительно высокая температура, которую, ввиду опасности взрывного разложения, следует ограничить максимальной величиной в 280 С. Поэтому степень превращения этилена в реакторе около 20 %. Время пребывания tau реакционной смеси колеблется в пределах 20-300 с. [c.189]


    Алкилирование ароматических углеводородов. Промышленное алкилирование ароматических соединений проводится в основном с целью получения этилбензола (полупродукта синтеза стирола), кумола полупродукта синтеза фенола) и алкилбензолов с длинными алкильными цепями (полупродуктов синтеза детергентов). При получении этилбензола в качестве катализатора применяется главным образом хлористый алюминий. Ежедневно таким способом производят несколько тысяч тонн этилбензола. Алкилирование с А1С1з проводят при приблизительно 4 атм, 120° С и соотношении бензола и этилена в сырье, равном 2,5. Этот способ алкилирования используется уже много лет и в настоящее время считается одним из наиболее эффективных методов получения этилбензола. Однако применение катализаторов Фриделя — Крафтса связано с рядом трудностей аппаратура должна изготавливаться из материала, устойчивого к коррозии, а применяемое сырье должно иметь достаточно высокую степень чистоты, иначе расход катализатора будет очень большим. Корродируют аппаратуру не столько сам катализатор А1С1з, сколько комплексы, которые образуются в ходе реакции в результате взаимодействия хлористого алюминия с компонентами сырья. Эти комплексы значительно более агрессивны и иногда единственным способом борьбы с коррозией является непрерывная замена корродированных узлов аппаратуры. Образованию таких комплексов, очевидно, способствуют содержащиеся в сырье примеси. Так, в частности, установлено, что одни и те же установки для производства кумола с фосфорнокислотным катализатором хорошо работают в одних местах и плохо в других. Хлористый алюминий частично растворяется в продуктах в 200 частях этилбензола растворяется одна часть А1С1з. В результате возникает еще одна проблема, связанная с нейтрализацией кислотных растворов, поскольку продукт алкилирования промывают водой, чтобы удалить растворенный в нем катализатор. Именно по этим причинам в настоящее время широко исследуется возможность проведения алкилирования на цеолитных катализаторах. [c.390]

    Получение галлия высокой чистоты, годного для полупроводниковой техники, из технического металла может быть достигнуто только комбинацией ряда вышеописанных методов очистки. Например, схема рафинирования, описанная в работе [49], предусматривает фильтрование металла, кислотную и щелочную обработку, электролиз и зонную плавку. При этом все операции очистки, особенно на последних ступенях, должны вестись так, чтобы воспрепятствовать попаданию примесей из применяемых реактивов, из материала посуды, а также из воздуха [62]. [c.168]


    ВИЯ анализа термодинамических условий процесса сгорания веществ в калориметрической бомбе. После 1934 г., когда было опубликовано 1-е сообщение постоянной термохимической комиссии Международного химического общества, в котором даны подробные рекомендации по методике, принята бензойная кислота в качестве эталона для определения теплового значения калориметров, указаны требования к чистоте веществ и приведены численные данные, служащие основой для термохимических вычислений, работы по определению энтальпий сгорания получили более широкое развитие во многих странах. Вместе с тем накопленный экспериментальный материал все еще невелик по сравнению с количеством известных органических соединений. Термохимически исследовано около 3000 соединений [1]. Главными практическими трудностями является трудоемкость этих работ и необходимость получения веществ высокой степени чистоты. Задача накопления величин энтальпий сгорания (АЯ ) и энтальпий образования (А//°) для линейных соединений облегчается тем, что существуют определенные закономерности в гомологических рядах органических соединений. На основании экспериментальных данных для многих линейных соединений разработан ряд полуэмпирических схем расчета АЯ или ДЯ с приемлемой точностью. Что же касается циклических и полициклических углеводородов, развитие схем расчета является более трудной задачей, а ограниченный экспериментальный материал еще осложняет ее. Поэтому систематизация имеющегося экспериментального материала, выявление некоторых закономерностей АЯ° или АЯ/ этих соединений и краткое рассмотрение методов расчета представляют несомненный интерес. [c.199]

    По окончании процесса направленной кристаллизации часть образца, обогащенную примесью, отделяют, а оставшуюся часть переплавляют. Если после одного акта направленной кристаллизации получаемая чистота продукта недостаточна, процесс может быть повторен до тех пор, пока не будет достигнута требуемая чистота. Заметим, однако, что при повторении направленной кристаллизации необходимо каждый раз отделять загрязненную часть образца, что приводит к потерям материала и, следовательно, удорожанию разделения. Поэтому метод направленной кристаллизации используют обычно для получения небольших количеств материалов высокой чистоты в тех случаях, когда другие методы разделения (в частности, рассматриваемый ниже метод зонной плавки) не могут быть применены. [c.268]

    Изложенный выше материал дает все основания считать, что предлагаемый метод вполне оправдывает себя для получения пропилена высокой степени чистоты, а равно и других низкокипящих углеводородов и газов. [c.203]

    Для спектрального анализа материалов высокой чистоты применяют, как правило, синтетические эталоны, материал которых получают синтезом компонентов основы и примесей. Иногда даже этот путь вызывает значительные трудности, главным образом, из-за отсутствия достаточно чистой основы или из-за существенных различий форм нахождения примесей в эталоне и анализируемом образце. Непременными условиями получения надежных синтетических эталонов являются сохранение заданного расчетного состава в процессе его синтеза установление состава по данным расчета устранение возможных при синтезе систематических погрешностей с помощью спектральных методов корректировки состава, основанных на применении способа добавок. [c.360]

    Обсуждены метрологические аспекты оптимизации управления качеством веществ и материалов высокой чистоты (по химическому составу). Рассмотрена согласованность норм содержания примесей в стандартах на вещества и материалы и норм точности в стандартах на методы их испытаний. На основе обобщения большого экспериментального материала оценена реально обеспечиваемая точность результатов определения примесей при использовании физикохимических и физических методов анализа. Приведены уравнения связи между величинами межлабораторных ошибок и концентраций определяемого элемента для различных основ, методов и элементов. Полученные результаты могут быть использованы при разработке новых методов анализа, стандартизации состава веществ и материалов и методов их испытаний, оценке достоверности экспериментальных данных материаловедческого и физико-химического характера. Рис. 2, библ. 4 назв. [c.237]

    Приведенный в статье материал показывает, что электрохимические методы начинают находить применение для синтеза различных классов органических соединений с высокой степенью чистоты. Особенный интерес представляют процессы электрохимического синтеза в крупнотоннажных производствах некоторых мономеров (адипонитрил, гексаметилендиамин, высшие дикарбоновые кислоты) благодаря возможности использования доступных видов сырья. Вследствие этого в некоторых случаях электрохимические методы получения органических соединений оказываются экономически выгодными. Ярким примером сказанного является электрохимический метод получения адипонитрила, который в настоящее время внедряется в промышленном масштабе в ряде стран. [c.276]


    При оценке этого материала обращало на себя внимание то, что данные, полученные различными исследователями для одного и того же вещества, имея сравнительно высокую относительную сходимость (0,02—0,05%), значительно разнились между собой. Это в некоторой мере могло объясняться недостаточной чистотой сжигаемых объектов, но, по-видимому, в основном являлось следствием несовершенства методики измерения. Основным методическим затруднением являлось то, что в то время измерение теплот сгорания не могло еще проводиться сравнительным методом с использованием эталонного вещества (I, стр. 214—217). Это значительно усложняло определение теплового значения калориметрической системы. Аддитивный расчет этой величины не мог дать точных результатов вследствие сложности калориметрической системы и неопределенности ее границ. Кроме того, при аддитивном расчете теплового значения причиной расхождения данных отдельных исследователей являлись еще и неизбежные ошибки в измерении температуры. В работах того времени авторы пользовались для измерения температуры ртутно-стеклянными термометрами и должны были вводить в измерения большое число поправок, чтобы выразить изменение температуры в градусах принятой в то время водородной шкалы. Введение этих часто не вполне достоверных поправок могло внести существенные ошибки в измерение температуры. Определение теплового значения методом ввода теплоты электрическим током также не было доступно в то время многим лабораториям из-за отсутствия достаточно точных электроизмерительных приборов и приборов измерения времени. Это приводило к тому, что многие авторы часто допускали существенные систематические ошибки при определении теплового значения своих калориметров. Наконец, сама техника проведения калориметрического опыта не была еще в то время столь совершенной, чтобы обеспечить получение результатов высокой точности. Выходом из создавшегося положения явилось использование всеми авторами для оцределения теплового значения своих калориметров эталонного вещества, т. е. вещества с точно определенной теплотой сгорания. Наличие такого вещества позволило измерять теплоты сгорания остальных веществ сравнительным методом, что значительно повысило бы точность измерений. Мысль о целесообразности введения такого эталона была высказана Э. Фишером еще в 1909 г. и поддержана многими авторитетными термохимиками, в частности В. В. Свентославским [2], однако для ее осуществления предстояло провести очень большую работу. [c.16]

    Необходимый в настоящее время уровень глубокой очистки веществ может быть достигнут только с использованием многоступенчатых методов разделения смесей. Наибольшее применение сейчас находят днстилляционные и кристаллизационные методы. С повышением температуры плавления и температуры кл-пения очищаемого вещества возможности этих методов быстро уменьшаются из-за загрязняющего действия материала аппаратуры. Особо чистые простые вещества (так называемые элементы особой чистоты), которые все еще являются основным объектом исследования в области получения веществ особой чистоты, в значительной части представляют собой или тугоплавкие металлы, или металлоиды, с атомной кристаллической решеткой, обладаю-шие высокими температурами кипения и плавления. Трудности подбора материала аппаратуры для работы с такими веществами становятся непреодолимыми. Поэтому для глубокой очистки простых веществ все большее распространение получает метод, состоящий в выделении их из особо чистых сложных летучих веществ, имеющих молекулярную кристаллическую решетку и, как следствие этого, низкие значения температуры плавления и температуры кипения. Выделение производится путем термораспада сложного соединения или путем восстановления его водородом. Продукты распада и исходное вещество должны иметь существенно более высокую летучесть, чем выделяемый элемент, чтобы от них можно было освободиться простым испарением без применения многоступенчатого процесса очистки. Этим требованиям в значительной мере удовлетворяют летучие неорганические гидриды, галиды и металлоорганические соединения (МОС). [c.3]

    Полиэтилен марок 270—278, выпускаемый по ТУ 6-05-1870—79, может быть получен с узким, средним п широким ММР и ПТР в пределах 0,2—55 г/10 мин. Он отличается от ПЭНД, получаемого по ГОСТ 16338—77, большей чистотой, белизной, более высокими физико-механическими свойствами. Этот материал предназначен для изготовления крупногабаритных изделий методом литья, для переработки в моноволокно, а также для переработки в крупногабаритные изделия методом экструзии с раздувом (ПЭНД порошкообразный с большой насыпной плотностью). По электрическим показателям и химической стойкости полиэтилен 270—278 аналогичен полиэтилену, получаемому по ГОСТ 16338-77. [c.222]

    Чистые материалы необходимы для исследования радиационных эффектов в полупроводниках. Неконтролируемые примеси сильно затрудняют эти исследования. Например, для того же германия большинство старых представлений о природе радиационных дефектов пришлось пересмотреть в последнее пятилетие, после того как начали применять в экспериментах материал с высокой степенью чистоты. Этот пример должен послужить уроком при планировании предстоящих экспериментов в области радиационной физики сложных полупроводников нельзя рассчитывать на серьезный успех в изучении природы дефектов в этих материалах, пока в распоряжении исследователей не будет достаточно чистых образцов или, по крайней мере, материалов с известным содержанием примесей. Между тем исследование радиационных дефектов представляет не только научный интерес без знания природы радиационных нарушений невозможно решить проблему радиационной стойкости и успешно внедрять в практику метод ионной имплантации — один из наиболее перспективных методов электронной техники. Заметим, кстати, что успехи в исследовании многих других явлений в физике полупроводников также зависят от прогресса в получении чистых веществ. До сих пор многие аномалии, отклонения от теоретических зависимостей физики вынуждены относить за счет так называемых неконтролируемых примесей . [c.154]

    Хотя в методе зонной плавки не применяются реактивы — источники загрязнений, но он имеет свои недостатки необходи-.мость иметь большие массы 30—50 г и более анализируемого материала, сравнительно низкий коэффициент обогащения и длительное время процедуры концентрирования. Поэтому метод целесообразно использовать, по-видимому, только на специальных предприятиях, применяющих зонную плавку, как один из методов получения веществ высокой чистоты. [c.184]

    Изучение природы дефектности и разработка на базе существующей методики получения пьезокварца синтетического материала высокой чистоты обусловили создание методов получения специальных сортов синтетического кварца. Использование без-дислокационных затравок и шихтового материала повышенной чистоты в сочетании с подбором оптимальных параметров процесса и применение специальных кристаллодержателей позволили разработать и внедрить в промышленное производство процессы выращивания оптического монокристального кварца, а также уникальных по размерам и ориентации монопирамидальных кварцев для акустоэлектронных приборов, [c.13]

    Из разработанных различными авторами методов синтеза А123ед наибольший интерес представляют методы, дающие продукт высокой чистоты при максимальном выходе. При обработке алюминиевой стружки парами селена при 1000° С в течение 36 час. в графитовом тигле Клемм и сотр. [3] получили соединение чистотой 98,5%, которое, по-видимому, содержало углерод. Рентгеноаморфный продукт, как и в случае сульфида алюминия, был получен иронусканием НоЗе в эфирный раствор триметил- или триэтилалюминия, избыток которого после реакции отгонялся [4]. При изучении реакции окиси углерода с селеном в качестве исходного материала, содержащего селен, был использован селенид алюминия Л123ез, который готовили сплавлением стехиометрических количеств алюминия и селена в трубке, помещенной в бомбу и нагреваемой до температуры красного каления [10]. Для исследования [c.27]

    Предлагаемая читателю книга Г. Мюллера и Г. Гнаука содержит конспективно изложенный материал по получению газов высокой чистоты, их очистке от примесей, методам анализа чистых газов, в частности с использованием обогащения. В книге рассматриваются также вопросы хранения газов, измерения их давления, а также перекачка газов и аппаратура. [c.5]

    Однако относительная сложность этого метода приготовления мопофер-ритов, а также значительные потери исходного материала, к тому же увеличивающиеся при повторных перекристаллизациях, необходимых для получения продуктов высокой чистоты, делают метод приемлемым в основном лишь для лабораторного применения [33]. [c.458]

    Принципы и техника электрофореза не требуют специального описания [14—16]. Обнаружение одиночного пика при двух или трех достаточно далеких значениях pH является признаком гомогенности. Применение для этой цели интерференционной онтики менее удовлетворительно, несмотря на ее высокую чувствительность, поскольку полученная кривая требует дифференцирования. Электрофоретическая подвижность зависит как от заряда молекулы, так и от гидродинамического сопротивления, причем оба эти фактора независимы. Они могут компенсироваться, давая в результате одинаковую подвижность для двух физически совершенно различных молекул, по это не может происходить при различных значениях pH. Поэтому важно проверить устойчивость гликопротеина в изучаемом интервале pH многие гликонротеины неустойчивы, особенно при высоких pH [17—19]. Полезная дополнительная информация может быть получена, если гликопротеин содержит заметные количества концевой сиаловой кислоты. В таких случаях заряд молекулы онределяется главным образом этим компонентом, и в большинстве случаев сиаловую кислоту можно почти полностью удалить с помош ью нейраминидазы. Если используемое количество фермента таково, что его можно обнаружить при последуюш,ем электрофоретическом анализе, фермент лучше сначала удалить, если это можно сделать удобным способом. Часто для этого пригодна гель-фильтрация. Молекулярный вес нейраминидазы холерного вибриона составляет около 9 -10 (Лэйвер [20]). Если после обработки нейраминидазой наблюдается два или более электрофоретически различных компонента вместо одного, наблюдавшегося перед обработкой, это значит, что материал, несмотря на его электрофоретическую гомогенность, содержит молекулы, различающиеся по химической природе остатков, от которых зависит заряд молекулы. Эта процедура может повысить степень полидисперсности, если реакция пе доведена до конца, но она не будет превращать гомогенные препараты в гетерогенные. Очевидно, важно убедиться, что используемая нейраминидаза не обладает никакой иной ферментативной активностью, особенно протеолитической. Описаны методы получения нейраминидазы необходимой чистоты [21, 22]. Проверке по этому способу был подвергнут а1-кислый гликопротеин человека [23], после обработки нейраминидазой наблюдалось два электрофоретических ника, несмотря на кажущуюся гомогенность необработанного материала в широком интервале рЬ1. [c.45]

    Резкий скачок в промышленном производстве А1 произошел в 80-х годах прошлого столетия, когда было технически освоено получение алюминия электролизом расплавленного раствора глинозема в криолите. Теория электрометаллургии была создана П. П. Фе-дотьевым. Отечественные ученые разработали метод получения глинозема нз нефелина. Глинозем — тугоплавкий материал, температура плавления чистого А1 0з 2072 °С, и для ее понижения добавляют преимущественно криолит Мал[А1Рг,1. При этом температура плавления понижается до 960 °С. Получение А ведут в специальных электрических печах. Продажный металл содержит примерно 99% А1. Главными примесями являются железо, кремний, титан, натрий, углерод, фториды и др. Для получения алюминия высокой степени чистоты его подвергают электролитическому рафинированию. Используют также процесс нагревания А1 в парах А1Рз (транспортную реакцию)  [c.271]

    Кристаллизация из газовой фазы дает возможность (подвергая, например, исходное твердое вещество сублимации с последующим осаждением) получать материал высокой степени чистоты, заданной структуры и с заданными свойствами. Метод кристаллизации из газовой фазы используют для получения тонкодисперсных порошков — пигментов и усиливающих наполнителей, в частности для получения оксидов (AI2O3, TiOa и др.) путем гидролиза газообразных хлоридов или путем их высокотемпературного окисления. Осаждение из газовой фазы применяют для покрытия подложек тугоплавкими соединениями или оксидными пленками либо для металлизации. Этот метод, заключающийся в эпитаксиальном росте кристаллов, т. е. в наращивании одного вещества на другое, базируется на сходстве строения срастающихся граней. Кристаллизацией из газовой фазы получают монокристаллы и монокристаллические пленки, в частности для лазеров и приборов микроэлектротехники. Возможно прямое осаждение из газов готовых твердых изделий, например, деталей полупроводников и других деталей сложной формы. Возможно также получение гранулятов физическим или химическим осаждением вещества из газа в кипящем слое. Свойства получаемых твердых фаз зависят от условий пересыщения газовой фазы, от температуры подложки и др. [c.262]

    Этот метод применяется главным образом для очистки уже сравнительно чистых материалов с целью получения продукта весьма высокой чистоты. Например, прохождение 40 расплавленных зон повышает чистоту олова с 99,99 до 99,999% [581. Метод зонного плавления был использован и для очисткв органических веществ для этой же цели испытывался обращенный процесс — зонной кристаллизации [25]. Чистота промышленного бензола после прохождения шести последовательных зон кристаллизации была доведена до такого уровня, что последующий контроль методом газо-жидкостной хроматографии не обнаружил в нем никаких примесей. Разумеется, характер удаляемых веществ и фазовые равновесия при столь высокой чистоте материала точно не известны. Поэтому исключается возможность вычислить эффективность каждой ступени очистки. Однако большое число зон плавления, необходимое для очистки, убедительно доказывает, что эффективность каждой ступени чрезвычайно низка вероятно, она не превышает 5%. [c.67]

    Усилия ученых направлены на разработку новых технологических методов получения керамики, на пoJ yчeниe новых композиций и микроструктур, способных пoдaвJ ять рост трещин. Кера.мика гфедоставляет широкие воз.можности производства эконо.мически выгодных материалов с заданны.ми свойствами на основе a-v ыx простых компонентов. Физические свойства таких материалов могут быть улучшены за счет минимальных изменений состава и ориентации кристаллических зерен, соединения различных видов кера.мики в один композиционный материал, а также за счет уничтожения или специального введения в структуру дефектов. Управление составо.м и микроструктурой керамики достигается за счет кристаллизации стекол, предельного измельчения исходного порошка высокой химической чистоты, а также плотной упаковки и прочной хи.мической сшивки частиц порошка. [c.53]

    В настоящее время для отбелки применяют различные отбеливающие реагенты гипохлориты, газообразный хлор, двуокись хлора, перекиси, перманганат калня, щавелевая кислота. Широко применяется метод отбелки и облагораживания целлюлозного материала кислородом в щелочной среде. При отбелке целлюлозного материала для химической переработки в ацетаты, более важным, чем высокая и устойчивая белизна, являет ся получение продукта высокой химической чистоты и с высокой пригодностью к ацетилировацию. Это достигается удалением нецеллюлозных примесей. [c.26]

    Химическую переработку богатых высококачественных концентратов после их обжига производят с целью получения чистых соединений молибдена — парамолибдата аммония и молибденового ангидрида. Из этих последних в случае необходимости легко получить любые другие соединения, в том числе и соединения особо высокой чистоты. Молибденовый ангидрид, находящийся в огарке, взаимодействует с растворами аммиака, щелочей, соды, некоторых кислот, образуя растворимые соединения. Щелочные металлы — нежелательные примеси для соединений молибдена, применяемых в электротехнической и химической промышленности. В растворе аммиака нерастворимо большинство примесей, сопутствующих молибдену в огарке. В то же время в щелочах, соде и кислотах растворяется больше примесей. Поэтому аммиачный способ переработки богатых молибденовых огарков более распространен. Его преимуществами, помимо высокого извлечения М0О3 в раствор и достаточно полного отделения примесей, являются также простота дальнейшей очистки аммиачного раствора, легкость выделения молибдена в виде чистого парамолибдата аммония, простота подбора материала для аппаратуры. Схема аммиачного метода переработки огарков после обжига молибденита представлена на рис. 144. [c.555]

    Для получения карбида кремния полупроводникового качества необходима высокая чистота синтезируемого материала и изготовление его в виде монокристаллов. Методы выращивания из расплавов в данном случае неприменимы (Si интенсивно возгоняется до достижения точки плавления при Гa 2500°С), поэтому возможны методы выращивания из паровой фазы и из растворов. Было показано, что кристаллы Si можно выращивать из его растворов в хроме, никеле и других металлах. Однако при этом кристаллы невоспроизводимы по свойствам и геометрии. Основным методом получения монокристаллов Si яв- [c.447]

    Представим себе рядовой случай какое-то производство перешло на новую технологию, которая сулит выпуск продукции более высокой чистоты. И сразу возникнет вопрос как убедиться, что желаемая чистота достигнута Или какова степень чистоты вновь полученного материала, показавшего себя технически перспективным Очевидно, нужны методы анализа, позволяюшие установить качественный состав остаточных примесей и определить их количественное содержание. Так как речь идет о чистых веществах, имеется в виду анализ следовых количеств. Методов требуется великое множество, поскольку каждый объект анализа нуждается в индивидуальных методических решениях и приходится анализировать далеко не одну примесь. Скажем, полный анализ полупроводникового кремния складывается из более 40 определений. [c.194]

    Препарат хромосом человека, не содержащий примеси клеток, может быть получен при соответствующей обработке, вскрывающей плазматическую и ядерную мембраны клетки. В семидесятых годах были разработаны методы фракционирования и проточной микрофлуоримет-рии, позволяющие осуществлять сортировку хромосом на фракции, содержащие индивидуальные хромосомы человека высокой чистоты (рис. 18.13). Когда свободные хромосомы добавляют к культивируемым клеткам мыши, то эти клетки могут захватывать целые хромосомы в процессе эндоцитоза. Внутри реципиентной клетки захваченные хромосомы обычно деградируют, распадаясь на фрагменты. Если такие фрагменты содержат центромерные области, то они могут поддерживаться как единое целое. Фрагменты, лишенные центромеры, могут транслоцироваться на мышиные хромосомы. В том и другом случае определенные человеческие гены будут экспрессироваться в гибридных клетках (рис. 18.14). Встраивание фрагментов в хромосому мыши происходит с очень низкими частотами, от 10 " до 10 на клетку. Встраиваемые фрагменты могут быть как очень мелкими, не видимыми в световой микроскоп, так и достаточно крупными, включая плечи хромосом и даже целые хромосомы. Такой перенос генетического материала от донора, сопровождающийся встраиванием в хромосомы реципиента, называется трансформацией (как у бактерий) или трансфекцией. [c.304]

    Хотя некоторые метоДы химического полирования позволянзТ получать блестящую поверхность на технически чистом алюминии и некоторых его кованых сплавах, но для получения полированной поверхности, равной по блеску высококачественному блестящему хромовому покрытию, требуется материал высокой степени чистоты, стоимость которого сравнительно высока. Однако это частично компенсируется тем, что из алюминия ввиду низкого удельного веса можно изготовить в 2—3 раза больше деталей, чем из латуни или стали, что имеет важное значение при отделке автомобилей, так как стоимость материала превышает экономию, получаемую на стоимости отделочных операций. Этот вопрос подробно рассматривается ниже. [c.78]

    Физические методы идентификации надежны. Однако при их применении предполагается, что исследованию подлежат органические соединения высокой степени чистоты, для получения которых требуется много времени расходуется много исследуемого материала. Поэтому не следует недооценивать значение химических методов идентификации, учитывая их быстроту и потребность в малом количестве исследуемой смеси, а также то, что они не тре-, буют никакой специальной аппаратуры. Ниже описаны реакции, характерные для определенных соединений и пригодные для об- [c.288]

    Здесь мы в большей степени касаемся применения фотохимии в промышленном синтезе. Очевидно, что фотохимический процесс должен превосходить по выходу или чистоте продукта обычные методы производства, чтобы конкурировать с ними. Особенно подходящими кандидатами для промышленного применения являются цепные реакции (часто с радикальными переносчиками цепи) с фотохимической начальной стадией. Мы уже рассматривали такое их использование в связи с фотополимеризацией (разд. 8.8.2). Заметим, что фотохимическая реакция может быть экономически оправданной даже в том случае, когда ее квантовый выход низок, если выход химического продукта выше, чем у обычных процессов. В производстве веществ тонкой химической технологии расходы на свет составлявот незначительную часть общей стоимости продукта высокого качества. Более того, вследствие относительно малых количеств используемого материала серийный процесс часто может представлять увеличенную копию лабораторного метода. При использовании фотохимии в широкомасштабном валовом химическом производстве возникают несколько большие трудности, так как плата за энергию может теперь составлять существенную часть стоимости конечного продукта. В широкомасштабном производстве часто применяются реакторы непрерывного действия, ставящие перед фотохимией проблемы, связанные с их конструкцией. В частности, необходимо использовать прозрачные реакторы или прозрачные кожухи ламп, стенки которых часто загрязняются образующимися смолообразными (и светопоглощающими) побочными продуктами. Размер реактора также может серьезно ограничиваться поглощением света реагентами. Этим недостаткам фотохимического синтеза должна быть противопоставлена более высокая селективность получения продуктов и лучший контроль за их образованием. Процесс производства отличается меньшими тепловыми нагрузками, поскольку реагенты не нужно нагревать, а затем охлаждать. Выли разработаны и технологии преодоления проблем, связанных с фотохимическими реакторами. Они включают освещение поверхности падающих тонких слоев реагентов использование ламинарных потоков несмешивающихся жидкостей, причем ближайшей к стенке реактора должна быть жидкость, поглощающая свет применение пузырьков газа, вызывающих турбулентность, для улучшения обмена реагента. И на- [c.283]

    Следует, однако, указать и на недостатки этих растворов их высокую начальную стоимость, вредное и загрязняющее действие на кожу и одежду, трудности поддержания чистоты на скваждне, где загрязнение нефтью осложняет работу буровой бригады. Дополнительные требования предъявляются и к оборудованию, в частности возникает необходимость укрытия очистной системы от дождя и снега, изменения режимов и методов очистки, борьбы с водопри-токами, повышения нефтестойкости резиновых деталей, проведения дополнительных противопожарных мероприятий. Трудности, связанные с газокаротажем, идентификацией шлама и кернового материала, возникают у геологической службы. Вследствие отсутствия сплошной проводящей среды невозможно снятие кривых ПС. Для получения достаточной информации о проходимых породах приходится прибегать к индукционному каротажу и другим геофизическим методам (нейтронному, гамма-каротажу и др.). [c.387]

    Родий поставляют в виде порошка, прутков и проволоки. Выплавляют родий и его сплавы в высокочастотных, индукционных, электроннолучевых и дуговых печах или в вакууме или в среде аргона. В случае перевода родия в компактную форму методами порошковой металлургии необходимо, в первую очередь, тщательно контролировать грануляцию частиц, поскольку от иее зависит давление прессования и температура спекания. Последнее обычно проводят при 1200 С в водороде, вакууме, или на воздухе. Имеются сведения, что температура перехода родия из пластичного состояния в хрупкое ниже —196 °С, однако технический родий очень хрупок. Слитки родия деформируют при 1500 °С, а дальнейшую горячую деформацию ведут при 1200—1450 °С, причем даже в этих условиях родий интенсивно упрочняется. Монокрисгалли-ческий родий заметно пластичнее и может быть прокатан вхолодную с обжатием до 90 %. Для снятия наклепа рекомендуется отжиг родия при температуре порядка 800 С. Поскольку температура рекристаллизации родия по разным данным составляет 800— 1200 °С, отжиг при более высоких температурах приведет к возникновению рекристаллизо-ваиных зерен и падению низкотемпературной пластичности родия. Отжиг следует проводить в инертной среде, поскольку в противном случае, иа поверхности материала образуется окисная пленка. Необходимо отметить, что температура рекристаллизации, а следовательно и температуры горячей деформации существенным образом зависят от чистоты родия. Известно, например, что начало рекристаллизации родия, полученного электронно-лучевой плавкой с зонной очисткой, происходит при 600°С. Соответственно, должны быть понижены т мпера-туры промежуточных отжигов. [c.502]

    Еще одна специфическая область приложения кристаллизационных методов — это глубокая очистка агрессивных, зачастую склонных к гидролизу жидких галогенидов элементов III—V групп и других аналогичных соединений, находящих применение при эпитаксиальном наращивании и легировании полупроводниковых пленок, широко используемых в современной радиоэлектронике. В данном случае кристаллизационная очистка оказывается предпочтительнее распространенных химических и физико-химических процессов очистки, при проведении которых не исключена возможность перехода примесей из экстрагента, комплексообразователя, ионообменника в очищаемый объект, с чем нельзя не считаться ввиду его высокой агрессивности и исключительно высоким требованиям к конечной чистоте продукта. Кроме того, применение кристаллизационных методов к подобного рода соединениям хорошо согласуется с общей тенденцией получения особо чистых веществ — понизить температуру процесса ультраочистки, чтобы свести к минимуму возможную диффузию примесей из материала аппаратуры, а также взаимодействие последнего с очищаемым веществом.  [c.81]

    Представленный материал относится к теме "Переработка твердых горючих ископаемых", а конкретно, к выделению индивидуальных полициклических углеводородов из фракций каменноугольной смолы. Как известно, химические продукты коксохимической промышленности получаются попутно и неизбежно в результате коксования каменных углей, а потому получение химического сырья экономически целесообразно, так как затраты определяются только стоимостью процессов извлечения индивидуальных продуктов. К тому же ряд областей новой техники нуждается в реактивах и препаратах высокой степени чистоты. Производство таких коксохимических продуктов требует внедрения более совершенных технологических процессов. Одним из таких процессов, позволяюш их получить из сырого антрацена без дополнительных операций по очистке такие полицикли-ческие углеводороды, как антрацен (98,5 %-й) и карбазол (99 %-й), является процесс, в основе которого лежит принципиально новый для коксохимии подход, заключающийся в применении метода межфазного катализа (МФК). Такой процесс был реализован на опытном производстве Института физико-органической химии и углехимии им. Л. М. Литвиненко (ИнФОУ) ПАН Украины. Это позволило получить не только вышеназванные продукты с выходами от ресурсов в сырье 90 % и 95 % соответственно, но и решить проблему комплексно, а именно, получить еще и фенантрен, который вместе с антраценом и карбазолом составляет 2/3 фракции сырого антрацена. [c.233]

    Изготовление сочленяющихся деталей по шаблонам. Этот вид работы на установке 2ЭФУ-М наиболее надежен и точен, так как освещение копира осуществляется нижним проходящим пучком света и контраст изображения кромки получается наибольшим, что создает наилучшие условия для датчика. Царапины на копируемой поверхности в этом случае не оказывают никакого влияния. Шаблон изготавливается из любого непрозрачного материала толщиной 2—5 мм (сталь, медь, латунь, пластмасса и др.). Шаблоном может служить готовая деталь с цилиндрической образующей (например, пуансон без уступов и конусности высотой до 50 мм). Размеры шаблона могут быть заранее скорректированы для получения деталей заданных размеров либо точно равны чертежным, тогда для компенсации ширины реза применяют метод дубль-шаблона. Боковая поверхность копира должна иметь чистоту не ниже 8—9-го класса, так как благодаря высокой чувствительности следящей системы каждая неровность и заусеница копира будет копироваться и ухудшать поверхность. Для повышения контраста изображения копируемую плоскость протирают карбидом бора для получения темной поверхности. Копир тщательно обезжиривают, промывая в спирте или бензине Б-70, и приклеивают к предметному стеклу оптического столика. Заход на линию копи- [c.200]


Смотреть страницы где упоминается термин Методы получения материалов высокой чистоты: [c.156]    [c.798]    [c.53]    [c.76]    [c.237]    [c.276]    [c.127]    [c.264]    [c.148]    [c.206]    [c.427]    [c.142]   
Смотреть главы в:

Курс общей химии -> Методы получения материалов высокой чистоты

Курс общей химии -> Методы получения материалов высокой чистоты

Предмет химии -> Методы получения материалов высокой чистоты




ПОИСК





Смотрите так же термины и статьи:

Материалы высокой чистоты

Материалы и методы

Получение высшие



© 2025 chem21.info Реклама на сайте