Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Количественное описание химической неоднородности

    III. КОЛИЧЕСТВЕННОЕ ОПИСАНИЕ ХИМИЧЕСКОЙ НЕОДНОРОДНОСТИ [c.303]

    Настоящая книга посвящена одному из аспектов теоретического описания химической реакционной способности молекул, а именно задаче количественного расчета тех или иных характеристик реагирующей системы, существенно влияющих на механизм элементарного акта химического превращения. Развитие этой стороны теории химической реакционной способности стало возможным в последние 10—20 лет как следствие быстрого прогресса в вычислительных возможностях квантовохимических расчетов. Интерес же к ним химиков продиктован потребностями теоретического описания реакций сложных неоднородных систем, для которых уже невозможно сформулировать простые правила, позволяющие в ряде случаев делать определенные заключения о реакционной способности практически без проведения каких-либо конкретных расчетов. [c.5]


    Оба метода количественного представления данных по химической неоднородности, описанные в разд. III,Б и В, обладают как преимуществами, так и недостатками. Преимущество величин /j и Vi заключается в том, [c.306]

    В развитии науки об адсорбции можно выделить два основных этапа. К начальному этапу относится накопление и эмпирическая обработка экспериментальных данных, полученных на адсорбентах с неопределенным химическим составом поверхности и неоднородной пористостью, таких как активированные угли, получавшиеся из природных органических материалов, и многие ксерогели. На этом начальном этапе экспериментальные данные обрабатывались с помощью различных эмпирических уравнений изотермы адсорбции (от уравнения Фрейндлиха [107] до уравнения Дубинина и сотр. [108—110]). Эмпирическое описание экспериментальных данных оставляет однако неясным вопрос о физическом смысле констант, входящих в эти уравнения [6]. Остаются неясными также и вопросы о том, применимы ли эти уравнения только к адсорбции в микропорах или и к адсорбции на поверхностях макропористых и непористых [96, 111, 112] адсорбентов, а также вопросы об интервале заполнений, для описания которых эти уравнения оказываются пригодными или непригодными. Чисто эмпирические уравнения не отвечают на вопросы, связанные с природой адсорбции. Остается неясным, почему один адсорбент адсорбирует одно вещество сильнее, чем другое, а другой адсорбент, наоборот, адсорбирует это вещество слабее, чем другой Как это связано качественно и количественно с химией поверхности и структурой остова адсорбента и со строением молекул адсорбата Почему в одних случаях изотермы имеют, а в других не имеют точки перегиба или разрывы На такие вопросы может дать ответ только молекулярная теория адсорбции. [c.31]

    Структурно-физические эффекты в химическом поведении полимера могут проявляться и в растворах. В качестве примера можно привести изученную Шибаевым, Платэ и Каргиным реакцию хлорирования полиэтилена [52]. Эта реакция помимо того, что представляет интерес как объект для количественного изучения эффекта соседа (см. гл. V и VI), дает возможность химическим путем обнаружить агрегацию полиэтилена в растворе. Если хлорирование проводить в 0,1%-ном растворе полиэтилена раствором хлора в хлорбензоле при 100, 115 и 125 °С, то продукты реакции всегда разделяются на резко неоднородные фракции — слабо хлорированный и сильно хлорированный полиэтилен. Если же реакцию вести при 130 °С и выше, то весь полимер композиционно весьма однороден и содержит либо 2, либо 30% С1, например в зависимости от продолжительности реакции. Это явление связано, по-видимому, с существованием ассоциатов макромолекул полиэтилена при более низких, чем 130 °С, температурах, для которых время жизни и перестройки соизмеримо с продолжительностью реакции. Поэтому при любой продолжительности реакции и возникает два типа продуктов — сильно хлорированные макромолекулы (образовавшиеся в результате хлорирования макромолекул находящихся на поверхности ассоциатов, а также хлорирования на молекулярном уровне после расхода ассоциатов) и мало хлорированные (находящиеся внутри ассоциатов, в которые хлор не проникает). Любопытно, что возможность существования ассоциатов макромолекул полиэтилена в этих условиях была независимо от описанного эксперимента подтверждена опытами по светорассеянию растворов этого полимера [53]. [c.48]


    Такое переплетение влияния различных эффектов и факторов на протекание большинства, в том чи"сле простейших по химизму, реакций в полимерах приводит к затруднению их количественного описания. Углубленное количественное описание проведено к настоящему времени на примерах реакций термической деструкции, окисления полимеров, ряда полимераналогичных реакций с учетом эффекта соседних звеньев и формирующейся композиционной неоднородности продуктов (гидролиз, хлорирование и др.), многих межмакромолекулярных реакций и формирования сетчатых структур в полимерах. Чисто химические аспекты изучены значительно больше в реакциях типа полимер — низкомолекулярное вещество по сравнению с реакциями полимер — полимер. При этом следует иметь в виду, что получаемые при количественном описании хи мических реакций полимеров константы их скоростей часто за висят от условий проведения реакций (тип растворителя, темпе ратура и др.), так как эти условия влияют на конформационные надмолекулярные и другие эффекты, которые, как было показано в свою очередь определяют возможность и степень протекания той или иной реакции. Наиболее сложными для количественного описания являются твердое и вязкотекучее состояния полимеров, концентрированные растворы, т. е. состояния, где проявляется межмолекулярное взаимодействие, переходы от полимераналогичных к внутримолекулярным и межмакромолекулярным взаимодействиям, что приводит к получению различных по физическому [c.229]

    Учитывая эти группы сил, можно записать уравнение для химического потенциала воды таким же способом, как для набухающих почв. Исключительно высокая неоднородность растительной ткани, в которой имеются три внутриклеточные фазы (клеточная стенка, цитоплазма и вакуоль) и внеклеточная фаза (сосудистая система), означает, однако, что свойствами, присущими целой клетке или совокупности клеток, нельзя объяснить специфические изменения в различных отдельных частях клетки. Следовательно, здесь положение не совсем сходно с тем, йакое мы наблюдали в набухающих почвах, которые по сравнению с растительной тканью вполне гомогенны. Любое описание растительной ткани, претендующее на то, чтобы быть количественным, фактически будет применимо лишь к одной ее фазе, так как отдельные составляющие водного потенциала в разных фазах могут иметь разную величину и под влиянием одних и тех же факторов изменяться в разной степени. [c.157]


Смотреть страницы где упоминается термин Количественное описание химической неоднородности: [c.499]    [c.8]   
Смотреть главы в:

Фракционирование полимеров  -> Количественное описание химической неоднородности




ПОИСК







© 2024 chem21.info Реклама на сайте