Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дополнение 6. Реакции окисления — восстановления

    При подготовке книги к новому изданию автор внес ряд дополнений и изменений. В частности, исключен весовой анализ, значительно переработаны гл. I — Основные понятия о растворах, гл. 1И — Электролитическая диссоциация, заново написаны гл. VI — Реакции окисления-восстановления и гл. УП — Комплексные соединения в качественный анализ внесены многие новые реакции, а количественный анализ дополнен главой о комплексонометрии. [c.4]


    Дополнение 6 Реакции окисления —восстановления [/]  [c.234]

    Как и при замедленности химической реакции, Коутецкий использовал II закон Фика, дополненный отражающим рост капли членом (2 /Зi)З /9 5 в форме дифференциального уравнения (2. 219), уже применявшегося Ильковичем в расчетах для окисленного вещества Зо с концентрацией Со и для восстановленного вещества Зв с концентрацией Св.  [c.394]

    Известны и гибридные процессы, сочетающие фотоэлектрохимическую и обычную электрохимическую стадии. В первом процессе участвует фотоанод из ТЮг и металлический катод. На ТЮг происходит окисление воды, а на металле — восстановление Ре + до Ре +. Продукт восстановления вступает в электрохимическую реакцию, где он вновь окисляется до Ре + обычным электрохимическим методом. Вторая электрохимическая стадия — восстановление воды с выделением водорода, причем в этом случае требуется меньшее напряжение, чем при обычном электролизе. Использование гибридных процессов может оказаться экономически оправданным дополнением к электролизу воды [522]. [c.340]

    Далее будет показано, что внутримолекулярно происходит также и гомолитический распад промежуточных соединений, образующихся при восстановлении солей диазония щелочным раствором формальдегида или при окислении фенилгидразина (см. стр. 510, 513). Подобные представления были развиты в работе Несмеянова и Реутова [531]. Этот же гомолитический, скрыторадикальный механизм рассматривался применительно к реакции распада нитрозоацилариламинов [516], фоторазложения гидроокиси фенилртути [343] и др. Реакции окисления-восстановления, широко распространенные в биологических системах [611], также имеют, можно думать, аналогичный механизм, причем в этих случаях акцепторами и донорами водорода должны быть энзимы (см. дополнение 14 на стр. 687). Джекман и Миллс [876] следующим образом детализировали механизм (9,9) реакции Меервейна — Пондорфа  [c.503]

    Около 90% ГЛЮКОЗЫ, усваиваемой эритроцитами, превращается в процессе гликолиза в лактат, но - 10% окисляется (через образование глюкозо-6-фосфата) в 6-фосфоглюконат. Это окисление (реакция а) катализируется глюкозо-6-фос-фат — дегидрогеназой [уравнение (8-42)] с участием NADP+. Именно эта реакция в основном обеспечивает эритроциты необходимым количеством NADPH, используемым для восстановления глутатиона (дополнение 7-Ж) в ходе реакции б. Глюкозо-6-фосфат—дегидрогеназа имеет очень важное значение, и все же свыше 100 млн. человек, особенно в тропических и средиземноморских странах, имеют наследственный недостаток этого фермента. Как оказалось, генетически эти нарушения весьма разнородны — обнаружено уже по меньшей мере 22 типа такого рода нарушений. Установлено, что отсутствие этого фермента приводит к весьма серьезным последствиям при некоторых заболеваниях, а также в ответ на введение определенных лекарственных препаратов наблюдается разрушение большого количества эритроцитов. Выживаемость дефектных генов, как и в случае серповидноклеточной анемии (дополнение 4-Г), по-видимому, обусловлена повышенной сопротивляемооью людей, имеющих такие гены, к малярии. [c.371]


    Биологическая роль. Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД , являющихся в свою очередь простетическими группами ферментов ряда других сложных белков —флавопротеинов. Некоторые флавопротеины в дополнение к ФМН или ФАД содержат еще прочно связанные неорганические ионы, в частности железо или молибден, наделенные способностью катализировать транспорт электронов. Различают 2 типа химических реакций, катализируемых этими ферментами. К первому относятся реакции, в которых фермент осуществляет прямое окисление с участием кислорода, т.е. дегидрирование (отщепление электронов и протонов) исходного субстрата или промежуточного метаболита. К ферментам этой группы относятся оксидазы Ь- и О-аминокислот, глициноксидаза, альдегидоксидаза, ксантиноксидаза и др. Вторая группа реакций, катализируемых флавопротеинами, характеризуется переносом электронов и протонов не от исходного субстрата, а от восстановленных пиридиновых коферментов. Ферменты этой группы играют главную роль в биологическом окислении. В каталитическом цикле изоаллоксазиновый остаток ФАД или ФМН подвергается обратимому восстановлению с присоединением электронов и атомов водорода к и ФМН и ФАД прочно связываются с белковым компонентом, иногда даже ковалентно, как, например, в молекуле сукцинатдегидрогеназы. [c.224]

    Предварительные пробы являются ценным дополнением к химическому исследованию органических соединений, так как при малой затрате материалов и времени они позволяют наметить пути проведения дальнейших исследований. Тем не менее настоящей областью качественного органического анализа, а следовательно, и капельного органического анализа является определение отдельных групп в органических соединениях, а также идентификация или открытие индивидуальных соединений. Все без исключения химические методы, пригодные для разрешения указанных вопросов, основаны на том, что в химическое взаимодействие вступают не сами органические соединения, а лишь их характерные функциональные группы. Существуют два способа использования таких реакций. Если имеются группы, которые реагируют с образованием продуктов присоединения, солей, продуктов конденсации, продуктов окисления или восстановления, то по характерной окраске, растворимости и т. п. этих продуктов можно идентифицировать исходные соединения или содержащиеся в них группы. В этом случае можно говорить о прямых реакциях. При непрямых (косвенных) реакциях используют способность некоторых групп к образованию соединений, которые в свою очередь могут быть идентифицированы по образованию солей, продуктов конденсации и др. Как правило, для непрямых реакций используют операции, применяемые обычно в препаративной органической химии для разложения, синтеза или превращения одних соединений в другие. [c.22]

    Последовательность импульсов накладывается на напряжение, медленно возрастающее по линейному закону, которое подается импульсным полярографом. Таким способом контролируется средний потенциал электрода, и начальный потенциал для каждой последовательности импульсов возрастает от капли к капле. В дополнение к этому импульсный полярограф служит программирующим устройством, которое определяет всю последовательность событий на каждой капле, а также используется для записи полярограмм. Для осуществления столь коротких времен заряжения необходимо, чтобы протекали значительные по величине нефа-радеевские токи. Однако эти токи не оказывают влияния на регистрируемый ток, если применяется метод фарадеевского выпрямления. При использовании периодической поляризации проявляются выпрямляющие свойства электродных процессов, обусловленные их нелинейностью. Если контролируется средний потенциал электрода, то вследствие выпрямления возникает малый компонент постоянного тока. Этот ток выпрямления г л пропорционален той доле вещества, восстанавливающегося в течение каждого промежутка t , которая затем не окисляется во время следующего интервала /2 — Ь. Поскольку при полностью необратимом процессе вообще не происходит обратного окисления, ток пропорционален полному количеству вещества, восстановленного за время tl. Большая чувствительность метода фарадеевского выпрямления в случае необратимых электродных реакций связана именно с этим обстоятельством. Поскольку обратное окисление невозможно, то во время прохождения последовательности импульсов происходит постепенное уменьшение концентрации деполяризатора, которое необходимо учитывать при обработке результатов. Между ячейкой и полярографом ставится фильтр нижних частот (рис. 5), который отделяет ток выпрямления от всех посторонних сигналов, а поэтому на полярографе регистрируется только среднее значение тока 1рп за вторую половину последовательности импульсов (т. е. за вторые 20 мсек). Это делается для того, чтобы получить сигнал, не искаженный переходным емкостным током, который быстро затухает. Наличие этого тока связано с нелинейностью емкости двойного слоя . Регистрация среднего значения тока 1 . имеет еще одно преимущество, которое заключается в том, что здесь используется стандартная аппаратура и берутся средние из большого числа измерений. Это значительно снижает величину малых случайных ошибок, которые влияют на точность методов, основанных на единичном измерении (рис. 6). [c.104]



Смотреть страницы где упоминается термин Дополнение 6. Реакции окисления — восстановления: [c.525]    [c.235]    [c.369]   
Смотреть главы в:

Механизмы органических реакций -> Дополнение 6. Реакции окисления — восстановления




ПОИСК





Смотрите так же термины и статьи:

Восстановления реакции

Дополнение

Окисления-восстановления реакци

Реакции окисления

Реакция окисления восстановления

окисление—восстановление



© 2025 chem21.info Реклама на сайте