Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Доноры водорода

    Каталитический крекинг олефиновых углеводородов в присутствии, например, алюмосиликатных катализаторов происходите гораздо большей скоростью, чом крекинг соответствующих парафиновых углеводородов кроме того, перенос водорода является основной реакцией, особенно для третичных олефинов [17]. В то же время термический крекинг олефинов происходит, примерно, с такой же скоростью, как и крекинг парафиновых углеводородов перенос водорода в этом случае представляет собой неизбирательную реакцию, имеющую значительно меньшее значение [17]. Такие факты характерны для поведения ионов карбония и свободных радикалов. Более легкий каталитический крекинг олефинов обусловлен более легким образованием ионов карбония путем присоединения протона катализатора к олефину. Перенос водорода, при котором имеет место отщепление гидридного иона от олефиновой или парафиновой молекулы. ионом карбония (правило 5), происходит легче в случае третичных ионов, чем вторичных, и является поэтому более избирательным к третичным олефинам. Соединения, являющиеся в реакции переноса донорами водорода, превращаются в диолефины, ацетиленовые и ароматические углеводороды, а также образуют отложения па катализаторе. [c.238]


    При гидродеалкилировании алкилароматических соединений в качестве донора водорода использован 9,10-дигидрофенантрен [c.85]

    На стадии инициирования цепи, которое происходит, вероятно, на стенке, образуется атом брома (уравнение 18). Последний, реагируя с молекулой третичного углеводорода при относительно низких температурах, атакует исключительно третичный атом водорода, образуя бромистый водород и третичный алкильный радикал (19). Последний может в силу возможной обратимости предыдущей реакции ассоциироваться с кислородом (20) полученный при этом радикал перекиси стабилизируется так же, как молекула гидроперекиси, путем обменной реакции с бромистым водородом (21), подобной реакции (2). Таким образом происходит регенерация атома брома, и далее реакции снова могут повторяться в том же порядке. Реакция (21) отличает окисление в присутствии бромистого водорода от прочих окислительных процессов, так как в отсутствии такого хорошего донора водорода перекисный радикал не может быстро образовать стабильную молекулу, и поэтому разрушается в той или иной степени с разрывом углерод-углеродной связи. Другое и важное отличие заключается в специфике атаки атома брома на углерод. [c.275]

    Олефины с третичными углеродными атомами насыщаются наиболее легко, а олефины с двукратно разветвленными цепями насыщаются в несколько раз быстрее, чем олефины с однократно разветвленными цепями. Нафтеновые углеводороды (циклогексан, декалин и тетралин) могут являться донорами водорода в реакции переноса водорода к олефинам. В результате образуются изопарафины и ароматические углеводороды [257, 265, 266]. [c.333]

    С тетралином, очень сильным донором водорода [192], главными продуктами являются бензол, алкилбензолы и нафталин [c.133]

    Разработан процесс деструктивной гидрогенизации венгерской смолистой нефти, содержащей 14,9% асфальтенов. Найдено, что расщепление ускоряется в первую очередь повышением температуры продукты расщепления не успевают гидрироваться растворенным водородом даже при 300 кгс/см , но в присутствии доноров водорода (тетралин или фракция гидрогенизата) образуют очень мало кокса, выносимого из реактора вместе с катализатором. В оптимальных условиях образуется 70% перегоняющихся продуктов (против 20% иа сырой нефти) и только 0,2% кокса одновременно удаляется половина (из 3,5%) серы [c.53]

    Предлагается сочетание термического крекинга сырой нефти с гидрированием и использованием гидрогенизатов в качестве доноров водорода [c.66]

    Предлагается новый процесс висбрекинга (отношение мазут разбавитель от 2 1 до 5 1) с добавкой донора водорода, которым служит предварительно гидрированная фракция 371—482 С. Расход водорода на гидрирование циркулирующего разбавителя 27 м /м  [c.68]


    Реппе, применив в качестве катализатора карбонил никеля ти галогениды никеля, образующие карбонилы в ходе самой реакции), распространил оксоироцессы на ацетилен, спирты и простые эфиры и нашел, что донорами водорода (протона) могут быть не только молекулярный водород, но также вода, спирты, меркаптаны, амины и т. д. В этих случаях образуются уже не альдегиды, а карбоновые кислоты или их производные (реакции карбоксилирования и карбонилирования)  [c.542]

    Хорошо проработаны различные сочетания процессов гидроочистки с другими процессами нефтепереработки, в результате чего открываются возможности резкой интенсификации последних. Это относится в первую очередь к процессам риформинга (см. стр. И) и каталитического крекинга . При каталитическом крекинге облагороженного сырья увеличивается выход бензина, возрастает его октановое число и производительность установок. Показана также целесообразность сочетания гидроочистки с висбрекингом в том числе с добавками доноров водорода [c.94]

    Вследствие реакции замещения между радикалом А-одного из антиокислителей (образующимся при взаимодействии с перекисным радикалом углеводорода) и молекулой другого антиокислителя ВН первый непрерывно регенерируется. Реакция, в которой донором водорода служит более слабый антиокислитель, является одним из источников синергизма. В паре амин — фенол доно- [c.73]

    Несколько особняком стоит способ гидрокрекинга с добавкой доноров водорода (способ Варга). В этом процессе используются неактивные катализаторы старого жидкофазного процесса деструктивной гидрогенизации и, видимо, поэтому он не находит промышленного использования, хотя идея добавки доноров водорода универсальна и применяется в других процессах. [c.95]

    Много надежд возлагалось на способ очистки, основанный на разложении диоксина под действием солнечного света в присутствии какого-либо вещества, являющегося донором водорода. Наиболее подходящим донором водорода, который можно без всяких опасений выпрыскивать на растительность, оказалось оливковое масло. К сожалению, несмотря на то что полевые испытания показали эффективность такого метода, использовать этот способ длл очистки было уже поздно. [c.425]

    Кокс представляет собой обедненные водородом смолообразные продукты. Поскольку при закоксовывании катализатор крекинга теряет активность, коксовые отложения обычно считаются нежелательными. Однако в работах [124, 125] и др. показана их положительная роль — как доноров водорода, насыщающего непредельные продукты каталитического крекинга. Коксовые отложения могут дать по крайней мере 50% водорода, необходимого для насыщения непредельных продуктов крекинга [125]. [c.95]

    В процессе частичной конверсии протекают реакции с выделением тепла (гидрокрекинг углеводородов с образованием метана) и с поглощением тепла (паровая конверсия метана, служащая донором водорода для реакции гидрокрекинга). Чем выше температура,тем большее развитие получает процесс конверсии метана. Температура процесса частичной конверсии выбирается с таким расчетом, чтобы процесс протекал в адиабатических условиях. Реактор частичной конверсии устанавливается после реактора очистки газа от сернистых соединений, где процесс протекает при 350—400 С. Нижняя температурная граница процесса частичной конверсии поэтому составляет [c.66]

    На практике наибольшее распространение в качестве растворителей-доноров водорода получили не индивидуальные вещества, а дистиллятные фракции продуктов ожижения угля с высоким содержанием конденсированных ароматических соединений. Вредными примесями в растворителях являются полярные соединения, например фенолы, а также асфальтены, содержание которых не должно превышать 10—15%. Для поддержания донорных свойств циркулирующий растворитель подвергается гидрированию. С помощью растворителя обычно удается передать углю не более 1,5% (масс.) водорода. Повышение глубины превращения органической массы угля достигается введением газообразного молекулярного водорода непосредственно в реактор. [c.72]

    Термическое растворение представляет собой мягкую форму химического преобразования угля. При взаимодействии с раст-ворителем-донором водорода часть органического вещества угля переходит в раствор и после отделения твердого остатка обычно представляет собой высококипящий экстракт угля, освобожденный от минеральных веществ, серо-, кислород- и азотсодержащих соединений и других нежелательных примесей. Для повышения степени конверсии угля в раствор может подаваться газообразный водород. В зависимости от типа исходного угля, растворителя и условий процесса методом термического растворения могут быть получены продукты различного назначения. [c.74]

    Количество насыш енных (неолефиновых) углеводородов, образуюш,ихся при гидрополимеризации, тем больше, чем выше концентрация серной кислоты. Так, например, в смеси пентенов с 98%-ной серной кислотой 70% исходного продукта превращаются в полимеризат, выкипающий в пределах 90—350° п состоящий в большей части пз парафиновых углеводородов. При этом растворимая в серной кислоте часть, выделяемая при разбавлении ледяной водой, оказывается сильно ненасыщенной и обнаруживает до трех и более двойных связей на молекулу. Реакция протекает по карбониум-ионному механизму. В присутствии концентрированной серной кислоты водород олефинов может переноситься из одной молекулы в другую, причем одна молекула превращается в парафин, а другая в диолефин, который еще раз может служить донором водорода, в то время как моноолефин является акцептором. [c.62]


    В донорно —сольвентном процессе фирмы Галф Канада гудрон (> 500 °С) тяжелой или битуминозной нефти смешивается с донором водорода при давлении 3,5 — 5,6 МПа и подается в трубчатую печь, где нагревается до температуры 410—460 °С, и далее — в в лносной реактор (кокинг-камера), где выдерживается в течение [c.246]

    Как ужо отмечалось, во многих окислительных процессах, при отсутствии доноров водорода, цепь может развиваться посредством взаимодействия радикала с радикалом (например, уравнение 3) при этом нет необходимости включать стадии обрыва цепи или ее разветвления. В ходе таких реакций образование относитеЛЬно нестабильных осколков, нанример, алкилоксира-дикалов, обычно происходит в результате разрушения углеродного скелета. При окислении низших парафиновых, углеводородов в большинстве случаев вследствие затруд- [c.273]

    Реакция переноса водорода обещает стать полезным типом каталитической гидрогенизации. Метод прост и не требует особой аппаратуры. В данном случае необходимо только обеспечить отвод вещества,- гидроге-низируемого при иомощи циклогексена и катализатора. Циклогексен может быть одновременно и растворителем и донором в качестве растворителя могут также служить метанол, этанол, диоксан, бензол. При гидрогенизации соединения, содержащего несколько непредельных связей, метод переноса водорода может оказаться более избирательным процессом, чем метод каталитической гидрогенизации. Так, например, л -ди-нитробензол превращается но этому методу количественно в л -нитроани-лин [102]. Циклогексен является одним из наиболее хорошо известных доноров водорода, применяемых для этой цели, но, вероятно, есть и дру- [c.262]

    Изучен процесс легкого гидрокрекинга ромашкинской нефтц в присутствии доноров водорода. Содержание серы снижается с 1,62 до 1,0%, увеличивается выход газойля и котельного топлива [c.79]

    Данные табл. 4 (см. также обобщающие статьи и монографии позволяют сделать вывод, что проблемы селективной гидроочистки любых дистиллятных продуктов от сернистых, азотистых и смолистых веществ в основном решены. Разработаны теоретические основы управления этими процессами путем варьирования технологических параметров в случае трудного сырья, т. е. сырья, содержащего много смолистых и ароматизированных компонентов, помимо более жестких условий используется противоток жидкого сырья, улучшающий его контакт с водородом а также цоб авка доноров водорода В целях уменьшения расхода водорода процессы проводят в условиях, при которых наряду с гид-рогенолизом сернистых соединений происходит дегидрирование нафк генов, дающее дополнительный источник водорода. Таким образом иожет быть обеспечена автогидроочистка бензинов, керосинов и [c.93]

    В донорно-сольвентном процессе фирмы Галф" Канада гудрон (> 500 °С) тяжелой или битуминозной нефти смешивается с донором водорода при давлении 3,5-5,6 МПа и подается в трубчатую печь, где нагревается до температуры 410- 460 °С, и далее - в выносной реактор (кокинг-камера), где выдерживается в течение определенного вр ме-ни. Продукты донорно-сольвентного крекинга затем подвергак1тря фракционированию в сепараторе и атмосферной колонне на газ, нафту и средние ди(. гилляты. Последние после гидрирования в специалылом блоке по обычной технологии в присутствии стандартных катализ-ато-ров поступают на рециркуляцию в качестве донора водорода. Остаток атмосферной колонны направляется на вакуумную перегонку с получением вакуумного газойля и остатка. На пилотной установке донорно-сольвентного крекинга гудрона получен следующий выход продуктов, % (мае.) газ - 5,2 нафта - 23,7 атмосферный газойль-7,7 вакуумный газойль - 30 и вакуумный остаток - 33,1. [c.81]

    Циклогексан — легко транспортируемая неядовитая жидкость, поэтому понятен интерес к нему как идеальному донору водорода со стороны специалистов, разрабатывающих экономичную водородно-топливную систему. Дегидрирование циклогексана в бензол с выделением водорода осуществляют при температуре 450—500 °С над серебряным или медным катализатором в виде сетки или дисперсного металла на носителе с низкой удельной поверхностью. Реактор представлен на рис. 2. Полного дегидрирования не происходит, и циклогексан частично попадает в ка-тализат. Обычно это не опасно, но если бензол — целевой продукт, то для его очистки требуется специальная дистилляция. Кроме упомянутых выше серебра и меди катализаторами дегидрирования циклогексана являются платина и палладий. [c.151]

    Тетралин является донором водорода во многих современных схемах получения жидких продуктов из угля. При его добавлении к измельченному углю достигаются два эффекта первый — растворение угля в тетралине, второй — гидрирование угля путем переноса водорода от тетралина к углю, имеющему дефицит водорода. Ввиду того что образующийся нафталин легко гидрируется в тетралин и лишь несколько труднее в декалин, такой путь переработки угля исключает необходимость подачи водорода в реактор ожижения угля. Гидрирование с переносом водорода от донора устраняет многие трудности, связанные с дозировкой и распределением газообразного водорода. [c.153]

    Другой метод, используемый в настоящее время в лабораториях, представляет собой сольволиз в растворителе, являющемся донором водорода. В данном случае происходит одновременно растворение и гидрирование угля, каждый из этих двух процессов взаимно способствует друг другу. Тетрагидронафталин и другие ароматические углеводороды частично использованы таким путем в методе Потта— Брохе. Тетрагидрохинолин, который в своей молекуле содержит водород и обладает превосходной способностью растворять хинолин, [c.38]

    Среди кетонов, способных к энолизацни, существуют и такие структуры, которые отличаются противоположными свойствами, а именно, способностью в определенных условиях, например под действием некоторых галоидалкилов, нретериевать эно.льное превращенпе и служить уже не акцептором, а донором водорода. [c.235]

    Выше уже отмечалось, что одно из серьезных затруднений при переработке тяжелых нефтяных остатков, особенно при использовании каталитических процессов, создает большое содержание в них атомов металлов, прежде всего ванадия и никеля, которые обусловливают быстрое старение (снижение активности) катализаторов в процессах. Так как основная часть этих металлов сконцентрирована в асфальтенах и смолах, то естественно, что процессы деасфальтизации в процессах подготовки к переработке тяжелых нефтяных остатков являются одновременно в большей или меньшей степени и процессами деметаллизации этого сырья. Так, авторы процесса Добен утверждают, что процесс этот позволяет вывести из гудронов 90—95% содержащихся в них ас-< )альтенов и тем самым снизить на 50—70% концентрацию металлов в сырье. Второе направление деметаллизации тяжелых нефтяных остатков основано на термическом разложении метал-лооргапических соединений смолисто-асфальтеновых веществ с последующим поглощением освободившихся атомов металлов в порах соответствующих адсорбентов. На этом принципе базируется запатентованный пенсильванской нефтяной компанией Sun Oil процесс деметаллизации тяжелых нефтяных остатков [6]. Согласно этому патенту, тяжелые нефтяные остатки в смеси с углеводородным растворителем, служащим донором водорода, и высокопористым минеральным адсорбентом с хорошо развитой поверхностью нагреваются при температуре 400—540° С и давлении 70—200 атм. В этих условиях тормозится процесс коксования смо- [c.246]

    Деметаллизированная часть гудрона насыщается водородом за счет растворителя — донора водорода. Адсорбент периодически регенерируется с целью выжига отложившегося на нем кокса, затем адсорбент, не освобожденный от адсорбированных в его порах металлов, снова поступает в реактор. Процесс этот дает возможность полнее использовать наиболее высокомолекулярную часть нефти, включая смолисто-асфальтеновые вещества, и значительно повысить выходы топливных нефтепродуктов. [c.247]

    Во всех случаях нафтеновые углеводороды являются более активными донорами водорода, чем парафиновые, и продукты крекинга нафтенового сырья имеют более насыщенный характер. Характерная для нафтенов реакция дегидрирования протекает тем интенсивнее, чем более разветвлена молекула так, было показано, что роль этой реакции становится ощутимой при девяти и более углеродных атомах в шестичленпом углеводороде Однако дегидрирование на алюмосиликатных катализаторах идет не так избирательно, как на металлических катализаторах, н получается сложная смесь ароматических углеводородов. В целом же скорость всех реакций крекинга нафтеновых углеводородов значительно возрастает с повышением молекулярного веса. Скорость крекинга нафгеновых углеводородов в присутствии алюмосиликатных катализаторов намного больше, чем при термическом процессе. Так, при температуре 500° С и одинаковой скорости подачи в реактор в присутствии катализатора циклогексан разлагается каталитически п )имерпо в 1000 раз быстрее. [c.156]

    Представляет интерес наличие углеводородов, которые могут быть названы донорами водорода , Примером такого донора является тетралин. Было показано, что ппи разбавлении тяжелых или высокоароматизированных видов сырья тетралином мо кно значительно сгшзить коксообразование в процессе их крекинга. Так, в результате глубокого крекинга гудрона относительной плотностью 0,994, коксуемостью 15,7% выход кокса достигал 17% па сы])ье, а нри разбавлении гудрона тетралином (в количестве 50% па сырье) при тон же глубине превращения составил всего 2%. Роль разбавителя-доиора при крекинге заключается в том, что содержащийся в нем Bbi oKoaiiTHBUbiu водород, выделяясь, насыщает ароматические радикалы и препятствует реакциям их уплотнения. [c.267]

    Основ1юй особенностью процесса являепся предварительное смешение перерабатываемого сырья с углеводородным разбавителем. В первых работах в этом направлении в качестве разбавителя был использован тетралин, являющийся, как было показано выше, хорошим донором водорода. Впоследствии тетралин был заменен [c.275]

    В перспективе возможны новые направления использования тетралина и декалина, кроме производства 1-нафтола из тетралина и применения их в качестве растворителя. Это — производство реактивных топлив с высокой плотностью [142], представляющих особую ценность для сверхзвуковой авиации, а также применение гидрированных нафталинов и метилнафталинов в ряде процессов, в частности, при ожижении угля и получении растворимого угля, в качестве донора водорода при крекинге с целью снижения кок-сообразования. [c.99]

    При жидкофазной гидрогенизации углей в температурном интервале 300—500 °С происходит разрушение сложной матрицы угля, сопровождающееся разрывом химических связей и образованием активных свободных радикалов. Последние, стабилизируясь водородом, образуют молекулы меньшего размера, чем исходные макромолекулы. Рекомбинация свободных радикалов приводит также к образованию высокомолекулярных соединений [74]. Водород, необходимый для стабилизации радикалов, частично обеспечивается за счет применения растворителей — доноров водорода. Это — соединения, которые, взаимодействуя с углем, при высоких температурах дегидрируются, выделяющийся при этом атомарный водород присоединяется к продуктам деструкции угля. Растворитель-донор водорода является также пастообразователем. Чтобы находиться в условиях гидрогенизационного процесса в жидкой фазе, он должен иметь температуру кипения выше 260°С. Хорошими водо-родно-донорными свойствами обладают конденсированные ароматические соединения, прежде всего тетралин. Более высо-кокипящие соединения этой группы (нафталин и крезол) менее активны, но при их смешении с тетралином возникает эффект синергизма смесь равных частей тетралина и крезола обладает более высокой донорной способностью, чем каждый в отдельности [70]. [c.72]

    К достоинствам процессов термического растворения следует отнести более низкую, чем при пиролизе углей, рабочую температуру и возможность варьирования в относительно широких пределах качества получаемого жидкого продукта за счет изменения параметров процесса. Вместе с тем при термическом растворении глубокое превращение угля достигается при высоком давлении процесса и в составе получаемых продуктов преобладают высокомолекулярные соединения. Присутствие последних вызвано тем, что уже при невысоких температурах начинают протекать процессы рекомбинации образующихся свободных радикалов, сопровождающиеся формированием вторичных структур ароматического характера, менее реакционноспособных, чем исходное органическое вещество угля. Наличие в реакционной смеси доноров водорода и растворенного в пасте молекулярного водорода не может в достаточной степени препятствовать протеканию этих процессов [74]. При промышленной реализации этого метода возникает ряд трудностей. Сложной технической проблемой является отделение непрореагировавшего угля и золы от жидких продуктов. Получаемый целевой продукт в условиях процесса жидкий, а в нормальных условиях может быть полутвердым и даже твердым веществом, которое трудно транспортировать, хранить и перерабатывать в конечные продукты. [c.78]


Смотреть страницы где упоминается термин Доноры водорода: [c.246]    [c.246]    [c.320]    [c.466]    [c.564]    [c.274]    [c.16]    [c.81]    [c.343]    [c.237]    [c.240]    [c.144]    [c.247]    [c.77]   
Органический синтез. Наука и искусство (2001) -- [ c.256 , c.259 ]

Органический синтез (2001) -- [ c.256 , c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Бензиловый эфир, донор водорода

Влияние потенциала и природы доноров протона на кинетический изотопный эффект и иредэкспонеициальный фактор выделения водорода

Водород также Акцепторы водорода Доноры водорода

Восстановление хлорорганических соединений металлами в присутствии доноров водорода

Донор

Донор перекись водорода—оксидоредуктазы Пероксидазы

Доноры атомарного водорода

Доноры электронов водорода

Изопропанол, как донор водорода

Метан, как донор водород

Общий путь катаболизма — основной источник доноров водорода для цепи переноса электронов

Пропионовая кислота, как донор водорода

Пропионовая кислота, как донор водорода полимеризации

Толуол как донор водорода

Толуол сравнение с цнклогексаном как донором водород

Угли-доноры и акцепторы водорода

Фотосинтез доноры водорода

Циклогексаи как донор водорода

Циклогексаиол как донор водород

Циклогексанон как донор водорода

Циклогексен как донор водорода

Электроны также Акцепторы водорода электронов Доноры водорода электронов Транспорт электронов

Этилбензол, как донор водорода



© 2025 chem21.info Реклама на сайте