Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальные методы определения коэффициентов молекулярной диффузии в жидкостях

    Все многообразие экспериментальных методов определения коэффициентов молекулярной диффузии в жидкостях можно разделить на три группы [1]. [c.221]

    Экспериментальные исследования диффузии начались еще в прошлом столетии [147], к настоящему времени разработано достаточно надежных методов для определения коэффициентов молекулярной диффузии растворенных газов в жидкостях. Ряд из них основан на стационарной диффузии, и при выводе расчетного уравнения используется первый закон Фика. Другие протекают в нестационарных условиях с использованием второго закона Фика. Наиболее представительными являются методы, основанные на абсорбции газа при ламинарном режиме движения жидкости. [c.797]


    Экспериментальные методы определения коэффициентов молекулярной диффузии в системе жидкост ь—жидкость [c.837]

    Экспериментальное определение и численные значения коэф-> фициентов молекулярной диффузии. Обзоры экспериментальных методов определения коэффициентов диффузии в жидкостях приведены в литературе . Самым простым методом, точность которого достаточна в большей части случаев для практических целей, является метод, связанный с применением пористых мембран, наиболее часто изготовляемых из спекшегося стекла Растворы, имеющие различную концентрацию, помещают по обе стороны пористой перегородки, и диффузия происходит в порах мембраны. Каналы в мембране весьма узки и могут тормозить конвективные токи поэтому с помощью пористых мембран можно измерять истинную молекулярную диффузию. Мембрану калибруют, используя раствор с известным коэффициентом диффузии, так как ни длина пор, ни площадь их поперечного сечения неизвестны. [c.171]

    Для объяснения экспериментальных данных по гидродинамиче-скому перемешиванию был выдвинут ряд моделей зернистого слоя. Наиболее удачной оказалась дискретная ячеистая модель, которая согласуется с описанной выше гидродинамической картиной течения в слое. Первоначальным вариантом дискретной модели была модель ячеек идеального смешения [12, 16], хорошо объяснившая данные по продольному перемешиванию в потоках газа. Для описания про- дольного перемешивания в потоках жидкости, где наблюдаются более сложные зависимости эффективного коэффициента продольной диф-, фузи от скорости потока, были выдвинуты различные варианты моделей с застойными зонами. Первой моделью этого типа была модель Тернера—Ариса [17]. Согласно этой модели зернистый слой рассматривали как канал постоянного поперечного сечения, характеризующийся определенными значениями линейной скорости по- тока и коэффициента продольной диффузии, от стенок которого отходят тупиковые каналы-ответвления, где по предположению, конвекция отсутствует и перенос вещества осуществляется только путем молекулярной диффузии. В последующих работах [18] застойные явления рассматривали в рамках ячеистой модели. Метод анализа таких систем, использующий аппарат характеристических -функций, был указан в работе Каца [19]. Расчеты но различным вариантам моделей с застойными зонами позволили объяснить наблюдаемые в потоках жидкости пониженные значения числа Ре ц и наличие хвостов у функций распределения времени пребывания в слое. Недостатком этих работ является, однако, то, что физический смь л застойных зон в них не конкретизируется вследствие этого оказалось невозможным выявить непосредственную связь характеристик продольного перемешивания с параметрами зернистого слоя и провести количественное сравнение теории с экспериментом. Готтшлих [20], пытаясь придать модели Тернера—Ариса физиче- ское содержание, предположил, что роль тупиковых каналов или застойных зон играет диффузионный пограничный слой у поверхности твердых частиц. Оценка толщины диффузионного слоя, необходимой для объяснения экспериментальных данных по продоль-) ному перемешиванию, не совпала, однако, с толщиной диффузионного пограничного слоя, оцениваемой на основе измерения коэффициента массопередачи (см. раздел VI.3). Это несоответствие было отнесено автором на счет влияния распределения толщины диффузионного слоя на неравнодоступной поверхности твердых частиц. Экспериментальное исследование локальных коэффициентов массопередачи в зернистом слое показывает [7 ], что в нем имеются области, массопередача к которым резка затруднена — зоны близ точек соприкосновения твердых частиц. Расчет по модели ячеек с застойными зонами близ точек соприкосновения твердых частиц [21 ] позволил [c.220]


    Поиск новых методов экспериментального определения коэффициентов молекулярной диффузии растворенных газов в жидкости привел ряд исследователей [54, 70, 71, 76, 214, 243] к разработке нового метода — метода Тейлоровской диффузии растворенного газа в ламинарном потоке растворителя. [c.811]

    При составлении справочника бьио уделено основное внимание диффузии в системах газ—жидкость и жидкость— жидкость, т. к. именно эти системы являются определяющими в большинстве технологических процессов химической, пищевой и биохшшческой отраслей промышленности. Весь справочный материал разбит на две главы, в которых содержатся сведения по расчету и методам экспериментального определения коэффициентов молекулярной диффузии в системах газ— жидкость (глава 1) и жидкость—жидкость (глава 2). В начале каждой главы приводятся уравнения для расчетов коэффициента молекулярной диффузии данной системы. Для больщипства уравнений даны примеры расчета. Затем описываются существующие методы экспериментальнш о определения этого коэффициента, оцениваются их достоинства и недостатки, область применения, С целью более глубокого ознакомления читателей с новыми методами экспериментального определения коэффициента молекулярной диффузии в отдельных случаях приводятся выводы уравнений для расчета этих значений из данных опыта. В конце каждой главы даны таблицы с численными значениями коэффициентов молекулярной диффузии, найденными экспериментально. [c.786]

    Определение молекулярного веса диффузионным методом является одним из основных методов исследования высокомолекулярных соединений благодаря тесной связи коэффициента диффузии с размером и формой диффундирующих частиц. Определение коэффициента диффузии может быть произведено по методу Ламма, принцип которого заключается в фотографировании точной микрометрической шкалы через столб жидкости, где происходит процесс диффузии. Вследствие наличия различной концентрации по вертикальным слоям кидкости положение делений шкалы на снимке будет изменено по сравнению с контрольным снимком шкалы, снятым через чистый растворитель. Различие в положении делений на обоих снимках измеряется нри помощи микрокомпаратора (с точностью до 1—2 ми1фонов) величина смещения нропорциона.льна изменению концентрации в данном слое столба жидкости. Производя спимки через разные промежутки времени, можно, не прерывая опыта, получить распределение градиентов концентрации по всему столбу жидкости при различной продолжительности диффузии. 2 Экспериментальная кривая после нормализации сравнивается с идеальной кривой по Гауссу, что позволяет оценить полидисперсность исследуемого вещества. [c.33]


Смотреть страницы где упоминается термин Экспериментальные методы определения коэффициентов молекулярной диффузии в жидкостях: [c.786]    [c.220]   
Смотреть главы в:

Основы массопередачи -> Экспериментальные методы определения коэффициентов молекулярной диффузии в жидкостях




ПОИСК





Смотрите так же термины и статьи:

Диффузии коэффициент определение

Диффузия жидкостях

Диффузия коэффициент диффузии

Диффузия молекулярная

Жидкость коэффициенты диффузии

Коэффициент диффузии

Коэффициент методы определения

Коэффициент молекулярной

Коэффициент определение

Коэффициент определение по коэффициентам

Метод диффузии

Молекулярная метод Метод молекулярных

Молекулярный вес, определение

Экспериментальное определение коэффициента диффузии

Экспериментальные методы определения

Экспериментальные методы определения коэффициентов диффузии

определение коэффициенто



© 2025 chem21.info Реклама на сайте