Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие пути расщепления гексозы

    ДРУГИЕ ПУТИ РАСЩЕПЛЕНИЯ ГЕКСОЗЫ [c.266]

    К началу 50-х гг., т. е. к тому времени, когда гликолитический путь Эмбдена — Мейергофа был изучен достаточно полно, стало очевидным, что высшие растения, так же как и другие живые организмы, имеют в своем распоряжении другой важный путь для расщепления гексоз до пирувата. Правда, первые указания на то, что глюкоза может окисляться в результате реакций, отличных от реакций гликолиза, были получены еще раньше речь идет [c.114]


    Пентозофосфатный цикл часто рассматривают как процесс полного окисления гексоз в СОг. Чтобы осуществить такое окисление, Сз-моле-кулы, рассматриваемые на рис. 9-8, Л как продукты, должны быть превращены обратно в глюкозо-6-фосфат (под действием альдолазы, фосфатазы и гексофосфат-изомеразы), который снова вступает в цикл. Однако имеются и другие пути расщепления Сз-продукта — фосфоглн-церинового альдегида. Например, под действием ферментов гликолиза он может быть окислен до пирувата, а далее в цикле трикарбоновых кислот до СОг. [c.343]

    Расщепление фруктозодифосфата (реакция 4) катализируется альдолазой [уравнение (7-64)] в результате образуются глицеральдегид-З-фосфат и диоксиацетонфосфат. Между этими двумя триозофосфата ми в результате действия изомеразы устанавливается равновесие (реакция 5 см. также гл. 7, разд. И, 4). Таким образом, обмен обеих половинок гексозы может пойти по пути превращения в пируват через глицеральдегид-З-фосфат. В то же время для диоксиацетонфосфата существует и другой путь, связанный с восстановлением в глицерофосфат— предшественник липидов н промеж ггочныА продукт в некоторых типах брожения. [c.337]

    Для реализации биосинтеза и метаболизма необходима энергия, запасаемая в клетках в химической форме, главным образом в экзергонических третьей и второй фосфатной связи АТФ. Соответственно метаболические биоэнергетические процессы имеют своим результатом зарядку аккумулятора — синтез АТФ из АДФ и неорганического фосфата. Это происходит в процессах дыхания и фотосинтеза. Современные организмы несут память об эволюции, начавшейся около 3,5 10 лет назад. Имеются веские основания считать, что жизнь на Земле возникла в отсутствие свободного кислорода (см. 17.2). Метаболические процессы, протекающие при участии кислорода (прежде всего окислительное фосфорилирование при дыхании), относительно немногочисленны и эволюционно являются более поздними, чем анаэробные процессы. В отсутствие кислорода невозможно полное сгорание (окисление) органических молекул пищевых веществ. Тем не менее, как это показывают свойства ныне существующих анаэробных клеток, и в них необходимая для жизни энергия получается в ходе окислительно-восстановительных процессов. В аэробных системах конечным акцептором (т. е. окислителем) водорода служит Ог, в анаэробных — другие вещества. Окисление без Oj реализуется в двух путях брожения — в гликолизе и в спиртовом брожении. Гликолиз состоит в многостадийном расщеплении гексоз (например, глюкозы) вплоть до двух молекул пирувата (пировиноградной кислоты), содержащих по три атома углерода. На этом, пути две молекулы НАД восстанавливаются до НАД.Н и две молекулы АДФ фосфоршгируются— получаются две молекулы АТФ. Вследствие обратной реакции [c.52]


    Таким образом, молочнокислые бактерии-это своего рода метаболические инвалиды , которые, вероятно в результате своей специализации (рост в молоке и других средах, богатых питательными и ростовыми веществами), утратили способность к синтезу многих метаболитов. С другой стороны, многие из них обладают способностью, которой нет у большинства других микроорганизмов они могут использовать молочный сахар (лактозу). В этом они сходны с многими кишечными бактериями (например, Es heri hia oli). Лактоза в растительном царстве, по-видимому, не встречается она образуется у млекопитающих, выделяется с молоком и соответственно с ним же поглощается. Таким образом, способность использовать лактозу можно считать приспособлением к среде, характерной для кишечника млекопитающих. Лактоза-дисахарид, который, прежде чем вступить на путь катаболизма гексоз, должен быть расщеплен  [c.273]

    Ферментативные пути, ведущие к синтезу пентозофосфатов, уже формировались в окислительном пентозофосфатном пути. Для восстановительного пентозофосфатного цикла уникальными являются два фермента, не участвующие в других метаболических путях фосфорибулокиназа и рибулозодифосфаткарбоксилаза. Первый из них связан с активированием молекулы акцептора путем вторичного фосфорилирования, а второй катализирует реакцию акцептирования рибулозо-1,5-дифосфатом молекулы СО2 и последующее гидролитическое расщепление образовавшейся гексозы на 2 молекулы 3-ФГК, одна из которых в карбоксильной группе содержит углерод из СО2. [c.294]

    Для того чтобы выявить последовательность химических реакций, составляющих тот или иной метаболический путь, можно воспользоваться тремя главными экспериментальными подходами. Первый из них, наиболее прямой, заключается в изучении метаболического пути in vitro (в пробирке), т. е. не в самой живой ткани, а в ее бесклеточном экстракте, сохраняющем способность катализировать весь исследуемый процесс в целом. Еще в середине прошлого века стало, например, известно, что дрожжи сбраживают глюкозу до этилового спирта и СО2. Однако изучение отдельных стадий этого метаболического пути, поставляющего анаэробным дрожжевым клеткам почти всю необходимую им энергию, началось по-настоящему только с 1898 г., когда Эдуард Бухнер обнаружил, что отжатый из дрожжей сок, не содержащий живых клеток, тоже способен сбраживать глюкозу до этилового спирта и СО2 (разд. 9.1). Позже выяснилось, что брожение в таких экстрактах происходит лишь при добавлении неорганического фосфата и что по мере потребления глюкозы этот фосфат исчезает из экстракта. Оказалось, что в среде накапливается при этом какое-то фосфорилиро-ванное производное гексозы, обладающее всеми теми свойствами, какими должен обладать один из промежуточных продуктов на пути превращения глюкозы в этиловый спирт и СО2. После того как этот промежуточный продукт был идентифицирован, в дрожжевом экстракте удалось обнаружить фермент, превращающий его в другой продукт. Этот последний в свою очередь был выделен и идентифипдрован. Таким образом, идентифицированными оказались уже два промежуточных продукта расщепления глюкозы. Добавляя к эстрак-там ингибиторы ферментов, исследователи добивались накопления других промежуточных продуктов. В конце концов благодаря комбинированию такого рода приемов удалось выделить и идентифи- [c.391]

    В предыдущем сообщении р для получения -арабоновой кислоты было применено трехступенчатое окисление -глюкозы бромной водой в -глюконат кальция, перекисью водорода в -арабинозу р] и опять бромной водой в -арабоновую кислоту с общим выходом 26—27%. Представилось интересным изучить одноступенчатое превращение гексозы непосредственно в пентоновую кислоту. При окислении -глюкозы в щелочной среде воздухом или перекисью водорода наблюдалось образование -арабоновой кислоты 1 , наряду с очень большим количеством других продуктов окисления и расщепления молекулы альдозыр]. Далее было выяснено, что при ступенчатом окислении -глюкозы в слабощелочном растворе бромноватистокислым барием при затрате одного, двух и трех эквивалентов кислорода соответственно образуются -глюконовая, 2-кето глюконовая и арабоно-вая кислоты, являющиеся основными продуктами окисления J. Позднее, при окислении чистым кислородом в щелочном растворе, из -глюкозы была получена калиевая соль -арабоновой кислоты с высоким выходом 1 ] кальциевая соль была получена путем значительного усложнения этого метода р]. [c.944]

    Фруктозо-1,6-дифосфат — лабильная фуранозная форма с симметрично расположенными фосфатными группами. Обе эти группы несут отрицательный заряд, отталкиваясь друг от друга электростатически. Такая структура легко расщепляется аль-долазой на две фосфотриозы. Следовательно, смысл подготовительного этапа состоит в активации молекулы гексозы за счет двойного фосфорилирования и перевода в фуранозную форму с последующим распадом на 3-фосфоглицериновый альдегид (3-ФГА) и фосфодиоксиацетон (ФДА), причем бывший 6-й атом углерода в молекуле глюкозы и фруктозы (фосфо-рилированный) становится 3-м в 3-ФГК, а 1-й атом углерода фруктозо-1,6-дифосфата остается 1-м углеродом (фосфорилиро-ванным) в ФДА (см. рис. 4.1). 3-ФГА и ФДА легко превращаются друг в друга с участием триозофосфатизомеразы. Из-за расщепления молекулы гексозы на две триозы гликолиз иногда называют дихотомическим путем окисления глюкозы. [c.139]


    Полисахариды и дисахариды практически не всасываются. Они подвергаются в кишечнике расщеплению на более простые формы — легко всасывающиеся моносахариды. Глюкоза и другие гексозы, а также пентозы легко всасываются через слизистую двенадцатиперстной и подвздошной кишки в капилляры кровеносной системы, которые впадают в воротную вену печени. Манноза и пентозы поступают в клетку путем диффузии, а галактоза, фруктоза и глюкоза транспортируются через слизистую путем облегченной диффузии (опосредованного переносчиком транспорта). Переносчиком является Ыа . [c.84]


Смотреть страницы где упоминается термин Другие пути расщепления гексозы: [c.281]    [c.224]    [c.160]   
Смотреть главы в:

Курс физиологии растений Издание 3 -> Другие пути расщепления гексозы




ПОИСК





Смотрите так же термины и статьи:

Гексоза

Гексозаны

Другие пути



© 2024 chem21.info Реклама на сайте