Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез ДНК у эукариот

    Возможно существование каких-то регуляторных белков или малых рибонуклеопротеидов, которые взаимодействуют с транслирующей рибосомой и избирательно останавливают или затрудняют элонгацию в определенных местах. Известен пример таких специфичных репрессоров элонгации в эукариотах это рибонуклеопротеид-ная частица, содержащая 7S РНК частица узнает особую N-концевую гидрофобную последовательность образующегося полипептида на транслирующей рибосоме, присоединяется к рибосомам и останавливает элонгацию до тех пор, пока рибосома не вступит во взаимодействие с мембраной эндоплазматического ретикулума (см. В.IX.2). Не исключено, что подобные механизмы используются для регуляции скорости элонгации на других стадиях синтеза белка, например, на определенных стадиях сворачивания белка или сборки белка на транслирующей рибосоме. [c.213]


    Ген рибосомной 5S-PHK у эукариот не связан с геном 45S-PHK и локализован не в ядрышке. У дрозофилы около 500 копий гена 5S-PHK расположены в правом плече хромосомы 2. За синтез 5S-PHK (нуклеотидная последовательность которой показана на рис. 15-12) ответственна РНК-полимераза III. Характерная особенность 5S-PHK состоит в том, что она может быть сложена по-разному, и до сих пор не ясно, каким способом или способами она укладывается в рибо сомах [87]. [c.227]

    Важным отличием М. г. э. эукариот от таковых у бактерий является их способность при включении в тот или иной локус изменять св-ва ферментов (продуктов генов-мише-нсй), а не только прерывать их синтез. [c.80]

    В организме эукариот синтез цитрата протекает в митохондриях, но в определенных условиях цитрат перемещается в цитоплазму, где он расщепляется под действием цитрат-лиазы. Полное течение реакции обеспечивается ее сопряжением с гидролизом АТР до ADP и неорганического фосфата  [c.169]

    Последовательности реакций, показанные в уравнениях (7-29) и (7-30), представляют собой общий механизм, используемый клетками для присоединения карбоновых кислот к—ОН",—SH-и—МНа-группам. Например, последовательность реакций (7-30) используется при образовании молекул аминоацил-тРНК, необходимых для синтеза белков. Механизм этих реакций показан в табл. 7-2. В зависимости от типа образующегося соединения (тиоэфир, сложный эфир или амид) реакции обозначены как S1A, S1B или SI . Символы а и y указывают, в каком месте происходит расщепление АТР при Р или при Pv Например, образование ацетил-СоА у эукариотов протекает по механизму SlA(a). Понятно, что эта последовательность включает гидролиз неорганического пирофосфата (Pi i) до неорганического фосфата (Pi), роль которого в сопряжении реакции расщепления АТР с биосинтезом рассмотрена ниже (гл. 11, разд. Б,2). [c.135]

    Таким образом, основные стадии процесса у эукариот и прокариот -инициация, элонгация и терминация - одни и те же, начало синтеза РНК так же включает основания А или Г. Отличия касаются ферментов и транскрибируемых последовательностей. [c.57]

    Очевидно, что важную роль в ко-трансляционном сворачивании белка может играть образование дисульфидных связей между цистеиновыми остатками. Дисульфидные связи, скрепляющие третичную структуру, особенно распространены у секреторных белков эукариот. Наоборот, внутриклеточные белки чаще характеризуются свободными сульфгидрильными группами цистеиновых остатков. Действительно, условия внеклеточной среды, по сравнению с внутриклеточной, являются более окислительными. Дисульфидные связи, по-видимому, могут завязываться между цистеиновыми остатками растущей полипептидной цепи уже по мере ее прохода через мембрану в межмембранный просвет. Такие связи могут возникать спонтанно при достаточно окислительных условиях среды. Однако, во-первых, скорость спонтанного образования дисульфидных связей в белке, по сравнению со скоростью его синтеза и сворачивания, не велика во-вторых, в процессе сворачивания всегда существует вероятность образования дисульфидных связей между не теми остатками цистеина, которые должны образовать мостики в законченной свернутой белковой молекуле. Более 20 лет назад [c.286]


    В клетках прокариот и эукариот имеются ферменты, концентрация которых не требует добавления индуктора это так называемые конститутивные ферменты. Количество фермента в клетке зависит от наличия продукта реакции, катализируемой данным ферментом, причем продукт реакции вызывает торможение синтеза фермента в результате репрессии (см. далее). [c.153]

    В ядрах эукариот обнаружены три специализированные формы РНК-полимеразы. РНК-полимераза I (или А по другой, номенклатуре) осуществляет в ядрышке синтез 18 S и 23 S рРНК- РНК-полимераза II (или В) — синтез информационных РНК- РНК-полимераза III (или С) — синтез тРНК и некоторых других низкомолекулярных РНК- РНК-полимеразы эукариот нечувствительны к ингибиторам бактериальных РНК-полимераз — рифампицину и стреп-толидигину. Специфическим ингибитором РНК-полимеразы II является токсин бледной поганки а-аманитин. Каждая форма РНК-полимеразы состоит из двух больших субъединиц с кД [c.136]

    У эукариот в состав транскриптона, как правило, входит только один ген. Транскриптоны прокариот чаще называют оперонами многие из них содержат по нескольку генов, обычно функционально связанных, например, кодирующих ферменты синтеза той или иной аминокислоты. Существуют опероны, содержащие гены, не кодирующие белков (гены рибосомных РНК, тРНК и др.). Описаны смешанные опероны, включающие гены тРНК и белков. [c.135]

    Вирусные (—)РНК-геномы обычно кодируют несколько белков и часто вся генетическая информация содержится в единой молекуле. Если речь идет о геноме фага, то особых проблем с синтезом этих белков не возникает, так как в клетках прокариот каждый цистрон полицистронной матрицы может транслироваться независимо. Иначе обстоит дело у вирусов эукариот. В мРИК эукариот, как правило, функционирует только один иниципр щий триплет. Чтобы [c.317]

    Наиболее простой цикл репликации / транскрипции вирусной РНК — это когда с геномной РНК снимается комплементарная копия и эта копия, в свою очередь, служит матрицей для синтеза геномной РНК роль мРНК в образовании всех необходимых для размножения вируса белков выполняет родительская РНК. Если отвлечься от частностей, то этот принцип реализуется у фага Ор и у вируса полиомиелита. Однако стратегии этих вирусов различаются в одном существенном отношении. Фаг Ор размножается в клетках прокариот, поэтому его (+)РНК может функционировать как истинная полицистронная мРНК. Хозяин вируса полиомиелита — эукариотная клетка. Соответственно на (+)РНК этого вируса имеется единственная точка инициации трансляции, и все зрелые вирус-специфические белки возникают в результате ограниченного протеолиза единого полипротеина-предшественника. Как и у ДНК-содержащих вирусов, у вирусов с РНК-геномом разные вирус-специфические белки требуются в разных количествах и в разное время, а образование всех этих белков из единого предшественника затрудняет количественную и временную регуляцию их производства. Поэтому у РНК-содержащих вирусов эукариот возникли механизмы, обеспечивающие появление разных мРНК для [c.331]

    Переключения на более сложные программы развития наблюдаются у колониальных форм бактерий, например у миксобактерий, но химические сигналы, вызывающие переключение, еще неизвестны [145]. Выявлено, однако, что у относящихся к эукариотам миксомицетов типа Di tyostelium (гл. 6, разд. Е, 5), имеющих такую же программу развития, сигналом субстратного голодания служит выброс сАМР >. Повышение концентрации сАМР воспринимается другими клетками, у которых в ответ так изменяются процессы биосинтеза, что происходят дифференцировка и образование плодовых тел i[I35, 136, 146], Отдельные клетки начинают вырабатывать целлюлозу, а также мукополисаха-риды образуется трегалоза, которая накапливается в спорах. Синтезу этих продуктов предшествует обра.зование новых ферментов. [c.353]

    Г. эукариот принципиально отличаются от бактериальных. Внутри них последовательности нуклеотидов ДНК, несущие информацию для синтеза белка, не непрерывны, а разделены в одном или неск. местах участками, не кодирующими последовательность аминокислот. Такой прерывистый Г. транскрибируется весь подряд, а из образовавшейся РНК удаляются некодирующие участки. Области, соответствующие кодирующей части Г., сшиваются с образованием мРНК (т. наз. сплайсинг). [c.517]

    Термин Г. впервые предложил В. Иогансен в 1909 для обозначения дискретных наследств, факторов, открытых Г. Менделем в 1865. Значит, прогресс в изучении тонкой структуры и закономерностей функционирования Г. связан с развитием методов генетической инженерии, позволяющих выделять индивидуальные Г. и получать их в препаративных кол-вах. Разработка способов расшифровки первичной структуры РНК, а позднее и ДНК, а также познание осн. механизмов биосинтеза нуклеиновых к-т в клетке открыли возможность искусств, синтеза Г. В 1967 А. Корн-берг впервые осуществил ферментативный синтез биологически активной ДНК фага XI74, содержащей 5 Г. В том же году X. Корана завершил полный хим. синтез двухцепочечного полинуклеотида (в одной цепи 199 нуклеотидов), соответствующего бактериальному Г., к-рый кодирует тиро-зиновую транспортную РНК. Однако применение хим. методов для синтеза Г. эукариот затруднено, в частности из-за очень большого их размера. Для этих целей более перспективно совместное использование хим. и ферментативных методов. [c.517]


    Важное достижение М. б.-раскрытие на мол. уровне механизма мутацгш. Главную роль в нем играют выпадения, вставки и перемещения отрезков ДНК, замены пары нуклеотидов в функционально значимых отрезках генома. Определена важная роль мутаций в эволюции организмов (в СССР инициатором исследований мол. основ эволюции бьш А. Н. Белозерский). Раскрыты мол. основы таких генетич. процессов у прокариот (бактерии и синезеленые водоросли) и эукариот (все организмы, за исключением прокариот), как рекомбинация генетическая - обмен участками хромосом, приводящий к появлению бактерий (вирусов) с новым сочетанием генов. Достигнуты значит, успехи в изучении строения клеточного ядра, в т.ч. хромосом эукариот. Усовершенствование методов культивирования и гибридизации животных клеток. способствовало развитию генетики соматич. леток (клеток тела). Была развита идея о репликоне (элементарная генетич. структура, способная к репликации как единое целое), объясняющая важные аспекты регуляции репликации (Ф. Жакоб и С. Бреннер, 1963). Значит, успех М. 6.-первый КИМ. синтез геиа, к-рый осуществил в 1968 X. Корана. Данные о хим. природе и тонком строении генов способотвовали разработке методов их выделения (впервые осуществлено в 1969 Дж. Беквитом). [c.110]

    Т. происходит на участках ДНК, наз. единицами Т. или транскриптонами. В начале и конце транскриптона расположены специфич. нуклеотидные последовательности-соотв. промотор и терминатор. Существование множества транскриптонов обеспечивает возможность незавиеимого считывания разных генов, их индивидуального включения и выключения. У животных, растений и др. эукариот в состав транскриптона, как правшю, входит один ген. Транс-криптоны бактерий обычно наз. оперонами ми. из них содержат по неск. генов, обычно функционально связанных (напр., кодирующих неск. ферментов, участвующих в синтезе той шш иной аминокислоты). [c.619]

    Окисление цитохрома с сопровождается появпением мембранного протонного потенциала ДцН, к- ый используется клеткой для обеспечения всех вцдов работ, выполняемых биомембранами, и в первую очередь для синтеза АТФ. Фермент широко распространен как среди эукариот, так и среди прокариот. У эукгфиот фермент расположен во внутр. мембране митохондрий, у прокариот - в цитоплазматич. мембране. Ц,- сложный белок, состоящий из неск. полипептидных [c.389]

    Один из возможных способов увеличения фотосинтеза и, следовательно, продуктивности растений состоит в клонировании хлоро-пластных генов в клетках бактерий и их переносе в растения. Известно, что хлоропласты и прокариотические клетки сходны по ряду признаков. На основании этого возникла симбиотическая гипотеза происхождения хлоропластов, впервые выдвинутая А. С. Фамин-циньпл (1886). Согласно этой гипотезе, клетки прокариот и хлоропласты сходны. В них присутствуют кольцевые ДНК, 708-рибо-сомы синтез белков начинается с одной и той же аминокислоты — N-формилметионина, а синтез белка подавляется хлорамфенико-лом, а не циклогексимидом, как у эукариот. Позже было показано, что ДНК-зависимая РНК-полимераза Е. соН связывается с определенными участками ДНК хлоропластов шпината. [c.150]

    Описанный выше процесс транскрипции с одним основным ферментом - РНК-полимеразой - характерен для прокариот. У эукариот действуют три РНК-полимеразы I-PHK - полимераза находится в ядрышке, где она катализирует синтез рРНК, полимераза II в нуклеоплазме катализирует синтез мРНК, а полимераза III в нуклеоплазме катализирует синтез тРНК. [c.57]

    В клетках эукариотических организмов обнаружены четыре ДНК-полимеразы а, р, V и 6. ДН К-полимераза а считается основным ферментом ядерной репликации. Содержание этого фермента заметно возрастает во время S-фазы клеточного цикла, когда происходит активный синтез ДНК- Только эта ДНК-полимераза подавляется афидиколином — ингибитором синтеза ДНК эукариот. Фермент состоит из нескольких субъединиц разного размера. Например, у дрозофилы молекулярные массы субъединиц составляют 148, 58, 46 и 42 кД. Полимеразная активность присуща самой большой из субъединиц. Молекулярная масса нативной эукариотической ДНК-полимеразы а составляет около 500 кД. Так же как в случае ДНК-полимеразы IИ . o/ , эффективность и высокая процессивность работы полимеразы а зависят до дополнительных субъединиц, которые сами по себе полимеризующей активностью не обладают. Одна из субъединиц ДНК-полимеразы а оказалась ДНК-праймазой — ферментом, необходимым для инициации новых цепей ДНК (см. ниже) ассоциация с праймазой не характерна для ДНК-полимераз бактерий. [c.50]

    Оказаки. Таким образом, синтез ДНК на двух матричных цепях исходной молекулы заметно различается. Новосинтезированная цепь которая синтезируется непрерывно, называется ведущей (англ. lea- ding), другая цепь называется запаздывающей (англ. lagging). Каждый фрагмент Оказаки имеет на 5 -конце несколько рибонуклеотидов— результат действия праймазы. Характерный размер фрагментов Оказаки различается для бактерий и эукариот у бактерий, они имеют длину около 1000 нуклеотидов, у эукариот они короче, порядка 100 нуклеотидов. Через некоторое время после синтеза РНК-затравки удаляются, бреши застраиваются ДНК-полимеразой,. а фрагменты сшиваются в одну ковалентно-непрерывную цепь ДНК предназначенным специально для этого ферментом, ДИК-лигазой. [c.54]


Смотреть страницы где упоминается термин Синтез ДНК у эукариот: [c.50]    [c.54]    [c.69]    [c.136]    [c.307]    [c.324]    [c.332]    [c.347]    [c.223]    [c.223]    [c.237]    [c.278]    [c.297]    [c.494]    [c.517]    [c.253]    [c.624]    [c.244]    [c.278]    [c.286]    [c.69]    [c.307]    [c.324]    [c.332]    [c.72]    [c.194]   
Смотреть главы в:

Современная генетика Т.2 -> Синтез ДНК у эукариот




ПОИСК







© 2024 chem21.info Реклама на сайте