Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительное в анаэробных условиях

Рис. 9,1. Процессы получения энергии путем окислительного фосфорилирования В аэробных и анаэробных условиях ( аэробное дыхание и анаэробное дыхание ) Рис. 9,1. <a href="/info/24937">Процессы получения</a> <a href="/info/1418714">энергии путем</a> <a href="/info/38828">окислительного фосфорилирования</a> В аэробных и <a href="/info/69500">анаэробных условиях</a> ( <a href="/info/68126">аэробное дыхание</a> и анаэробное дыхание )

    Молочная кислота образуется в мышцах в анаэробных условиях и является конечным продуктом гликолиза. Количество образовавшейся молочной кислоты эквивалентно количеству распавшейся глюкозы. Установлено, что содержание молочной кислоты в крови человека и животных повышается после мышечной работы. Особенно резкое увеличение количества молочной кислоты наблюдается после усиленных мышечных упражнений. Однако уровень молочной кислоты в крови быстро снижается, так как она поглощается печенью и превращается там в гликоген. Ресинтез гликогена из молочной кислоты не может протекать самопроизвольно и осуществляется только при условии сопряжения его с окислительными процессами, дающими энергию. По данным Пастера и Мейергофа, ресинтез гликогена сопряжен с окислением некоторой части молочной кислоты до углекислого газа и воды. Основная масса молочной кислоты при этом превращается в гликоген. В настоящее время установлено, что в аэробных условиях при достаточном притоке кислорода гликогек и глюкоза окисляются через стадию пировиноградной кислоты до СОг и Н2О, минуя образование молочной кислоты (см. стр. 172). [c.254]

    Плесневые грибы — типичные возбудители окислительного-брожения. Спиртовое и другие анаэробные брожения вызываются бактериями и дрожжами. В строго анаэробных условиях (протекающих без доступа кислорода) биологические процессы вызываются бактериями. [c.21]

    Окислительно-восстановительные реакции в почве влияют на подвижность и, следовательно, доступность растениям таких элементов питания, как железо, марганец, азот, сера и др. Например, при разложении органических соединений в условиях высоких значений окислительно-восстановительного потенциала сера переходит преимущественно в сульфаты, а при низких значениях, т, е, в анаэробных условиях, — образуются сульфиды. [c.260]

    Основным катаболическим процессом деструкции глюкозы в клетках животных и человека является последовательность ряда реакций ее окисления, в результате которьгх в анаэробных условиях глюкоза превращается в лактат, а в аэробных — в конечные продукты СО2 и воду. Ниже приведена биологическая значимость окислительных превращений глюкозы  [c.242]

    Метанобразующие бактерии — строгие анаэробы. Первые исследования чистых культур, вьщеленных из рубца жвачных животных, показали, что рост их возможен при начальном окислительно-восстановительном потенциале среды ниже -300 мВ. Рост некоторых видов полностью подавляется при содержании в газовой фазе более 0,004 % молекулярного кислорода. В последнее время, однако, описаны виды с относительно низкой чувствительностью к О2. В их клетках найдена супероксиддисмутаза. Возможно, в природе такие виды могут сохранять жизнеспособность при кратковременных контактах с О2 и возобновлять рост в анаэробных условиях. [c.424]


    Использование в качестве источника энергии в анаэробных условиях пентозных субстратов, образуемых в окислительном пентозофосфатном пути, свойственно фуппе гетероферментативных молочнокислых бактерий, для которых характерно образование в качестве конечных продуктов брожения ряда органических соединений молочной и уксусной кислот, этилового спирта, глицерина, СО2 и др. Этим гетероферментативные молочнокислые бактерии отличаются от гомоферментативных, почти полностью сбраживающих гексозы по гликолитическому пути в молочную кислоту. [c.253]

    Эта схема дает возможность создать практически одинаковую, пониженную концентрацию загрязнений во всем объеме аэротенка. Поступающие сточные воды разбавляются содержимым аэротенка, что дает возможность подавать в аэротенк сточные воды с высокой концентрацией загрязнений без предварительного разбавления. Возвратный активный ил регенерируется по пути прохождения первого коридора аэротенка, в который он возвращается из вторичных отстойников. Вследствие восстановления окислительной и адсорбционной способности активного ила, длительного времени контакта его со сточной водой не требуется и за короткий срок (3 ч) органические соединения разрушаются и удаляются из очищаемой жидкости. При очистке сточных вод по такой схеме в аэротенках не будут возникать анаэробные условия, так как потребление кислорода будет почти одинаковым во всем сооружении. [c.206]

    Выше мы разобрали наиболее простой способ решения донор-акцепторной проблемы, который реализуется в виде молочнокислого брожения у группы гомоферментативных молочнокислых бактерий. Дальнейшие поиски на путях эволюции привели к формированию других метаболических возможностей для решения этой проблемы. Одна из них заключается в том, что из пировиноградной кислоты в результате ее окислительного декарбоксилирования образуется ацетальдегид, который становится конечным акцептором водорода. В итоге из 1 молекулы гексозы образуются 2 молекулы этилового спирта и 2 молекулы углекислоты. Процесс получил название спиртового брожения. Спиртовое брожение распространено среди прокариотных (различные облигатно и факультативно анаэробные эубактерии) и эукариотных (дрожжи) форм. В анаэробных условиях у высших растений также отмечено накопление этилового спирта. [c.219]

    Таким образом, возникнув сначала как механизм синтеза клеткой Сз-соединений, т.е. для выполнения узкой специфической задачи, этот путь получил дальнейшее развитие и стал выполнять дополнительную функцию снабжения эубактерий энергией в анаэробных условиях. Субстратная база для окислительного пентозофосфатного пути позднее была расширена, так как он стал использоваться и для сбраживания пентоз биогенного происхождения, накапливавшихся в окружающей среде. [c.256]

    В процессе гликолиза молекула глюкозо-6-фосфата превращается в две молекулы пирувата, последний в анаэробных условиях восстанавливается до лактата. Третья важная реакция — окислительное декарбоксилирование пирувата, которое завершается образованием ацетил-КоА (С2-фрагмент), который затем вовлекается в цикл трикарбоновых кислот. Через реакцию трансаминирования пируват связан с аминокислотами, а при окислении глицерола (метаболит липидов) образуются триозы (3-фосфоглицериновый альдегид или 3-фос- [c.443]

    В почве пестициды трансформируются особенно интенсивно под действием микроорганизмов [3, 18—21]. В зависимости от условий разрушение пестицидов может протекать как по окислительному, так и по восстановительному механизмам. В аэробных условиях разложение большинства пестицидов протекает по окислительному механизму, а в анаэробных условиях возможно их восстановление, например превращение ДДТ в ДДД. [c.685]

    Другой процесс, продуцирующий АТФ, - гликолиз, но он дает меньше АТФ, чем окислительное фосфорилирование. Окисление глюкозы до пирувата дает две молекулы АТФ, тогда как при полном окислении глюкозы до СО2 образуется 36 молекул АТФ. Гликолиз, в отличие от окислительного фосфорилирования, который требует постоянного поступления О2, может протекать с высокой интенсивностью в анаэробных условиях в течение непродолжительного времени. [c.439]

    Получение накопительных культур и выделение. Для вьщеления сульфатредуцирующих бактерий необходимо использовать питательную среду, содержащую подходящий донор водорода, пригодный для ассимиляции углеродный субстрат, минеральные вещества и сульфат необходимо поддерживать анаэробные условия и достаточно низкий окислительно-восстановительный потенциал = - 200 мВ) (рис. 9.4). [c.313]

    Разложение органических веществ в процессе биологической очистки может происходить в аэробных и анаэробных условиях. Аэробные процессы обычно используются для окисления загрязнений, остающихся в сточной воде после отстаивания, а именно растворенных, коллоидных и тонкодиспергированных органических примесей, не выделившихся при отстаивании. Окисление осуществляется аэробными микроорганизмами в естественных (биологические пруды, поля орошения и поля фильтрации) условиях и на искусственных очистных сооружениях (аэротенки, био- и аэрофильтры). В аэротенках, окислительных прудах воспроизводятся процессы самоочищения, протекающие в водоемах. В биофильтрах, аэрофильтрах, на полях орошения и полях фильтрации воспроизводятся почвенные процессы самоочищения. Эффективность удаления органических веществ определяется технологическими особенностями очистных сооружений и выбором оптимальных условий для жизнедеятельности микроорганизмов. Оптимальная нагрузка по органическим веществам, температура, pH, количество растворенного, кислорода, отсутствие токсичных примесей определяют эти условия. [c.256]


Таблица 11.4. Использование водорода бактериями, способными регенерировать АТР путем окислительного фосфорилирования в анаэробных условиях Таблица 11.4. <a href="/info/98110">Использование водорода</a> бактериями, способными регенерировать АТР <a href="/info/101344">путем окислительного</a> фосфорилирования в анаэробных условиях
    Насколько резко может усиливаться обмен веществ в мышцах при их сокращении, показывают следуют,ие цифры покоящиеся мышцы человека поглощают около 1,7 мл кислорода на 1 кг ткани в минуту при очень напряженной работе мышечная ткань потребляет за то же время около 180 мл кислорода на 1 кг веса, т. е. окислительный обмен при работе мышцы усиливается примерно в 100 раз. Еще больше увеличивается при работе мышцы в анаэробных условиях образование молочной кислоты. Так, например, в мышцах лягушки на 1 кг ткани в состоянии покоя образуется 0,2 мг молочной кислоты в течение часа, при тетаническом же сокращении — до 180 мг, т. е. интенсивность анаэробного гликолиза при работе возрастает почти в 1000 раз. [c.413]

    Насколько резко может усиливаться обмен веществ в мышцах при их сокращении, показывают следующие цифры покоящиеся мышцы человека поглощают около 1,7 мл кислорода на 1 кг ткани в минуту при очень напряженной работе мышечная ткань потребляет за то же время около 180 мл кислорода на 1 кг веса, т. е. окислительный обмен при работе мышцы усиливается примерно в 100 раз. Еще больше увеличивается при работе мышцы в анаэробных условиях образование молочной кислоты. Интенсивность анаэробного гликолиза при работе может возрастать почти в 1000 раз. [c.437]

    Молекулярный водород образуется в процессе анаэробного распада ор-ганичес1Ь1х веществ в осадках водоемов и в анаэробных участках почвы. Многие бактерии способны к использованию этого водорода. Значительная часть его подвергается окислению теми бактериями, которые живут в сообществе с выделяющими Нз организмами, осуществляющими брожение. Ощсление Н2 такими бактериями сопровождается восстановлением сульфата до сульфида или СО2 до метана (см. разд. 9.4). Почти во всех группах бактерий, синтезирующих АТР путем окислительного фосфорилирования в анаэробных условиях ( анаэробное дыхание ), есть формы, способные использовать молекулярный водород в качестве донора электронов (см. гл. 9, а также табл. 11.4). [c.357]

    Брожением называется такой процесс, при котором ферментативная окислительно-восстановительная реакция проходит в анаэробных условиях при участии одного соединения, а акцептором водорода является один из продуктов реакции. Чаще всего брожение наблюдается при разложении углеводов. [c.217]

    Не полностью используемый бактериями на окислительные процессы кислород обеспечивает протекание катодной деполяризационной реакции грунтовой коррозии стали в анаэробных условиях. Сероводород уменьшает перенапряжение водорода в кислых и слабокислых грунтах, облегчая протекание катодного процесса в этих условиях. Сульфид-ионы, действуя как депассиваторы, а также связывая железо в труднорастворимые и малозащитные сульфиды, растормаживают анодный процесс коррозии стали. По данным некоторых исследователей, скорость коррозионного разрушения стали при воздействии этих бактерий может возрастать в 20 раз. [c.388]

    В предыдущих разделах было показано, что огромное влияние на состав нефти оказывает окислительно-восстановительная обстановка фоссилизации исходного ОВ. Не случайно многие исследователи учет характера окислительно-восстановительных условий преобразования ОВ считают обязательным при определении отложений, перспективных на нефть (Л.В. Пустовалов, Г.И. Теодорович, Л.А. Гуляева, Н.М. Страхов, В.В. Вебер, А.Э. Конторович и др.). Поскольку методики оценки аэробных потерь ОВ не существует, то учитываются лишь анаэробные потери. По различным оценкам более 90 % первичной биопродукции окисляется, еще не достигнув дна бассейна осадконакопления. Из оставшегося ОВ до 90 % окисляется при участии аэробной микрофлоры и лишь 5—10% — анаэробной (М. Бендер, Д. Хегги, 1984 г.). Таким образом, подавляющее количество ОВ теряется в ходе аэробного окисления. Поэтому не удивительно, что именно эта стадия преобразования ОВ оказывает решающее влияние на его состав и, как следствие, на формирование геохимического облика нефти. Логично предположить, что этот процесс во многом определяет не только качественный состав нефтей, но и их количество в осадочной оболочке земли. [c.130]

    Ф. играет важную роль в обмене в-в и энергии в клетках животных, растений и микроорганизмов. Донорами фосфорильной группы служат АТФ и др. нуклеозидтрифосфа-ты. Ф. аденозиндифосфа.та фосфорной к-той — осн. процесс синтеза АТФ, к-рый осуществляется в результате окисления низкомол. орг. соединений в анаэробных условиях (гликолитич. Ф.), аэробных условиях окислительное фосфорилирование) или в результате фотосинтеза (фото-фосфорилирование). Э. Е. Нифантъев. [c.629]

    Аминирование нитроаренов. Весьма интересным следует считать сообщение об использовании методологии 5 в реакции ариламинирования нитробензола анилином в присутствии гидроксида тетраметиламмония Эту реакцию можно охарактеризовать как протекающую в анаэробных условиях в отсутствие вспомогательной уходящей группы и внешнего окислителя и ведущую к производным 4-нитродифениламина 42 и 4-нитрозодифе-ниламина 43 (схема 27). Возможный механизм образования этих продуктов включает присоединение анилид-иона, образующегося из анилина под действием сильного основания - гидроксида тетраметиламмония, к нитробензолу, что ведет к анионному аддукту 44. Последний претерпевает либо внутримолекулярное окисление нитрогруппой, давая продукты 42 и 43, или участвует в межмолекулярном окислительном процессе с исходным нитробензолом с образованием 4-нитродифениламина 42 и нитрозобен-зола. Эффекты, вызванные изменением соотношения между анилином и нитробензолом на выходы продуктов 42 и 43, полностью согласуются с приведенным механизмом. [c.125]

    Важную роль в аэробном метаболизме пропионовых бактерий играет флавиновое дыхание , которому приписывают основную связь этих бактерий с молекулярным кислородом. В процессе фла-винового дыхания происходит перенос двух электронов с фла-вопротеинов на О2, сопровождающийся образованием перекиси водорода, которая разлагается бактериальной каталазой и перок-сидазой. Однако флавиновое дыхание не связано с получением клеткой энергии. Транспорт электронов в дыхательной цепи некоторых пропионовых бактерий сопровождается образованием АТФ, что может указывать на подключение к этому процессу ци-тохромов, однако эффективность окислительного фосфорилирования низка. Последнее, вероятно, объясняется несовершенством механизмов сопряжения. В то время как в аэробных условиях конечным акцептором электронов с НАД Н2 является О2, в анаэробных условиях им может быть нитрат, фумарат. [c.231]

    Таким образом, функционирование гликолиза и пути Энтнера—Дудорова совместно с ЦТК, а также окислительного пентозофосфатного цикла приводит к полному окислению исходных субстратов углеводной природы. Электроны с переносчиков поступают в дыхательную цепь (см. рис. 95, В) и в зависимости от условий могут передаваться на молекулярный кислород или другие конечные акцепторы (фумарат, нитрат). Кроме того, Е. oli в анаэробных условиях в отсутствие подходящего акцептора может получать энергию, осуществляя брожение, основным продуктом которого является этанол. [c.394]

    Гликолиз лежит в основе ряда процессов брожения, т. е. катаболиче-ских превращений углеводов микроорганизмами в анаэробных условиях (табл. 18.3). Брожение, как и анаэробное расщепление углеводов, — это внутренние окислительно-восстановительные процессы, в результате которых [c.252]

    Получение органических кислот. Прежде чем рассмотреть конкретные биотехнологические процессы получения органических кислот, необходимо оговориться, что под рубрику "брожения" должно быть отнесено образование в анаэробных условиях только молочной и пропионовой кислот с помощью соответствующих бактерий, тогда как биосинтез лимонной, глюконовой, итако-новой и некоторых других органических кислот определенными микромицетами представляет собой разновидность того или иного окислительного (аэробного) процесса и поэтому отнесение их к брожениям является условным. [c.411]

    В процессе гликолиза молекула глюкозо-б-фосфата превращается в две молекулы пирувата (1), последний в анаэробных условиях восстанавливается до лактата (2). Третья важная реакция - окислительное декарбоксилирование пирувата, которое завершается образованием ацетил-КоА(С2-фрагмент), который затем вовлекается в цикл трикарбоновых кислот. Через реакцию транса минирования пируват связан с аминокислотами 4), а при окислении глицерола (метаболит липидов) образуются триозы (3-фосфоглицериновый альдегид или 3-фосфодиоксиацетон), которые далее вовлекаются в процесс гликолиза (5). Еще один путь метаболизма пирувата - его карбоксилирование и превращение в оксалоацетат (6). В дрожжах он способен метаболизировать также с образованием этилового спирта (7). Реакция карбоксилирования позволяет пирувату либо включится в процесс глюнонеогенеза, либо образующийся из него оксалоацетат участвует в пополнении пула промежуточных метаболитов цикла трикарбоновых кислот, если клетка испытывает недостаток АТФ. [c.456]

    Окислительно-восстановительный потенциал. Жизнедеятельность бактерий зависит от потенциала. Процессы превращения остатков органических соединений при свободном доступе кислорода (аэробные условия) и воды аналогичны медленному горению и называются тлением. Гумификация (перегни-вание) характеризуется недостаточным доступом воздуха (анаэробные условия) и влаги. Этот процесс приводит к накоплению зауглероженпого остатка (гумуса), часть которого может растворяться в воде. Превращение органических веществ в условиях избытка влаги и отсутствия кислорода широко распространено в природе и называется оторфением оно приводит к появлению твердых гумусовых продуктов. Образование сап-ропелей из водорослей и планктона протекает в отсутствие кислорода под слоем воды (восстановительные реакции) и известно как процессы гниения, или гнилостного брожения. [c.30]

    Исследования окислительно-восстановительных реакций были проведены в водных растворах ионов желеэа(Л,Ш) в присутствии различных субстрат-лигандов в аеробных и анаэробных условиях варьированием pH, ионной силы и температуры в широком интервале. [c.106]

    Процесс окисления углеводов в клетках аэробов и анаэробов протекает совершенно одинаково вплоть до стадии образования ПВК Конечным продуктом этого этапа кроме ПВК является и восстановленная дегидрогеназа НАДНг. Поскольку в анаэробных условиях не может произойти окисление НАДНг кислородом (как это происходит в клетках аэробов), регенерация фермента протекает за счет окислительно-восстановительной реакции с участием ПВК или продуктов, образованных из нее. Эти реакций дальнейшего превращения ПВК значительно варьируют у различных микроогранизмов и приводят к, образованию различных конечных продук- [c.66]

    Многие бактерии, однако, и в анаэробных условиях используют окислительное (электрон-транспортное) фосфорилирование при этом происходит перенос электронов, получаемых при расщеплении субстрата, по (укороченной) электрон-транспортной цепи на экзогенные (добавленные в питательную среду) или эндогенные (образующиеся при разложении субстрата) акцепторы. Акцепторами электронов могут быть ионы нитрата, сульфата, карбоната и фумарата, а также сера соответствующие виды бактерий объединяют в физиологические группы нитратвос-станавливающих, денитрифицирующих, сульфатредуцирующих, метаногенных и ацетогенных бактерий, а также бактерий, восстанавливающих серу. Все эти бактерии играют важную роль в природном балансе. Так как фосфорилирование, сопряженное с транспортом электронов, долгое время считалось характерной принадлежностью аэробного дыхания, то, говоря о преобразовании энергии при окислительном фосфорилирова-нии в анаэробных условиях, в настоящее время пользуются также термином анаэробное дыхание (см. гл. 9). [c.248]

    Восстанавливающий фермент - метил-СоМ-метилредуктаза-представляет собой мультиферментный комплекс, который содержит, в частности, белковые факторы i 43o и гидрогеназу. Вероятно, реакция всегда сопровождается выведением из клетки протонов, и создающийся в результате этого протонный потенциал доставляет энергию для регенерации АТР. Из этих результатов можно заключить, что вообще метанобразующие бактерии синтезируют АТР не путем фосфорилирования на уровне субстрата, а путем окислительного фосфорилирования в анаэробных условиях ( анаэробное дыхание ). [c.320]

    Смешанные популяции почвенных бактерий в анаэробных условиях восстанавливают ионы Fe(III) до Fe(II). Если в среде помимо Fe(III) присутствуют также ионы нитрата и нитрита, то сначала восстанавливаются они (до нитрита и Nj, денитрификация) и лишь после этого-ионы Fe(III). Предполагают, что перенос электронов на трехвалентное железо осуществляет нитратредуктаза А. Поскольку восстановление нитрата сопряжено с окислительным фосфорилированием, не исключено, что и восстановление Ре(1П) может использоваться в процессе анаэробного дыхания . Окислительно-восстановительный потенциал E , который для пары Fe /Fe равен + 770 мВ, делает такую реакцию термодинамически возможной. Поскольку оксиды трехвалентного железа практиче-ски нерастворимы в воде, они сначала должны быть переведены в растворимую форму, способную проникать внутрь бактериальных клеток. Это, вероятно, осуществляется с помощью сидерофоров. Неудивительно, что в таких условиях наблюдается лишь медленный и незначительный рост бактерий. [c.324]

    Для грибов характерен окислительный тип метаболизма. Это не означает, что грибы не способны к анаэробному расщеплению углеводов, т.е. не цогут их сбраживать (ведь спиртовое брожение осуществляется как раз дрожжами ) однако в анаэробных условиях сколько-нибудь длительный рост грибов невозможен. Кроме того, основными продуктами брожения оказываются этанол или молочная кислота. Другие органические кислоты образуются только в аэробных условиях, [c.328]


Смотреть страницы где упоминается термин Окислительное в анаэробных условиях: [c.72]    [c.152]    [c.496]    [c.206]    [c.629]    [c.342]    [c.254]    [c.24]    [c.281]    [c.239]    [c.494]    [c.506]    [c.232]    [c.405]    [c.224]   
Общая микробиология (1987) -- [ c.357 ]




ПОИСК







© 2025 chem21.info Реклама на сайте