Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембранный потенциал и транспорт протонов

    Транспорт протонов. Добавляя молекулярный кислород к суспензии аэробных бактерий или митохондрий, находившихся перед тем в анаэробных условиях, можно заметить снижение pH среды. Это позволяет заключить, что во время дыхания из бактериальных клеток и митохондрий выводятся протоны (рис. 7.12, v4 и Б). Если из мембран бактерий или митохондрий приготовить пузырьки, у которых прежняя внутренняя сторона обращена наружу (вывернутые везикулы), то при дыхании будет наблюдаться обращенный перенос протонов, приводящий к подщелачиванию суспензионной среды (рис. 7.12, В). В результате перемещения протонов создается градиент электрохимического потенциала. Внутреннее пространство интактных митохондрий или бактерий электроотрицательно по отношению к суспензионной среде и отличается более высоким pH. Оба трансмембранных градиента-градиенты pH 16  [c.243]


    Все формы направленного движения и транспорта нуждаются в энергии. В большинстве случаев эта энергия используется в форме АТР. Однако для переноса белков в митохондрии требуется еще наличие электрохимического градиента на внутренней митохондриальной мембране. Этот градиент образуется в процессе транспорта электронов по мере того, как протоны откачиваются из матрикса в межмембранное пространство (см. разд. 7.1.7). Внешняя митохондриальная мембрана свободно проницаема для ионов, поэтому на ней не поддерживается никакой градиент. Электрохимический градиент на внутренней мембране используется как аккумулятор энергии для осуществления большей части синтеза АТР в клетке. Кроме того, энергия градиента расходуется для переноса внутрь митохондрии белков, несущих положительно заряженные митохондриальные сигнальные пептиды. Если добавить ионо-форы, сбрасывающие митохондриальный мембранный потенциал (см. разд. 7.2.10), этот перенос блокируется. Каким образом электрохимический градиент способствует переносу белков Ответ на этот вопрос пока не получен. [c.30]

    В пользу хемиосмотической гипотезы говорят следующие факты 1) существование протонного мембранного потенциала и зависимость его от интенсивности транспорта электронов 2) корреляция между эффективностью действия разобщителей на фосфорилирование и протонную проницаемость мембран 3) синтез АТФ хло-ропластами в темноте при искусственном создании [c.105]

    Сопряжение транспорта ионов через мембранный потенциал. При работе дыхательной цепи митохондрий происходит выброс протона из матрикса в окружающую среду (см. раздел 1), сопровождающийся появлением на мембране [c.135]

    Источником энергии, обеспечивающим активный транспорт в клетки различных микроорганизмов, в большинстве случаев является трансмембранный электрохимический потенциал ионов водорода, который может создаваться за счет переноса электронов или распада АТФ под влиянием мембранной АТФазы. Переносчики, имеющие места связывания протонов и молекул субстрата, используют мембранный потенциал (протонодвижущую силу) для транспорта в клетку ионов водорода и питательных веществ. Связывание с протоном должно повышать сродство переносчика к субстрату, а высвобождение его от протона на внутренней поверхности мембраны — понижать это сродство. Такой совместный транспорт одним переносчиком двух субстратов в одном направлении называется симпортом в отличие от унипорта, когда переносчик транспортирует только один субстрат. Многие питательные вещества поступают в клетки микробов также за счет симпорта с ионами Na+ или К . Существует еще механизм антипорта, когда один переносчик транспортирует два субстрата, но в противоположном направлении. [c.59]


    Дыхательная цепь транспорта электронов обеспечивает работу протонных насосов, которые используют свободную энергию потока электронов для перекачивания протонов наружу, против градиента концентрации Н . В результате, как отмечено выше, возникает электрохимический потенциал. Затем выведенные наружу ионы снова устремляются внутрь через специальные каналы или поры для этих ионов в мембране. В дыхательной цепи электроны идут по градиенту концентрации, и во время их перехода через молекулу АТФ выделяется энергия. Именно эта свободная энергия и служит движущей силой для сопряженного синтеза АТФ из АДФ и фосфата. [c.87]

    Хемиосмотическая теория сопряжения окисления и фосфорилирования. Эта гипотеза предложена в 1961 г П. Митчеллом причем значительный вклад в ее доказательство был сделан В. П. Скулачевым с соавторами. Согласно этой теории, фактором, сопрягающим окисление с фосфорилированием, является электрохимический, протонный потенциал АцН , возникающий на внутренней мембране митохондрий в процессе транспорта электронов. При этом предполагается, что мембрана непроницаема для ионов, особенно протонов, их транслокация с внутренней стороны мембраны (из матрикса) на наружную сторону внутренней мембраны митохондрий осуществляется за счет процесса окисления в дыхательной цепи, т. е. транспорта высокоэнергетических электронов. Возникающий электрохимический потенциал АцН+ является аддитивным он складывается из химического потенциала АрН и электрического со знаком (+) на наружной стороне мембраны (Avj/)  [c.203]

    Движение ионов через мембраны происходит частично благодаря электрохимическим градиентам и частично с помощью локализованных в мембранах насосов. Когда транспорт осуществляется по электрохимическому градиенту, ионы сначала присоединяются к особым участкам на мембране (пермеазам). Затем они проникают в клетку в соответствии с уравнением Нернста, если общий эффект градиента их концентрации по обе стороны мембраны и электрический трансмембранный потенциал обеспечивают движущую силу, направленную внутрь. Транс-, мембранные потенциалы образуются двумя путями 1) в результате диффузии как анионов, так и катионов, которые, однако, движутся через мембрану с разными скоростями 2) благодаря электрогенному транспорту с прямым использованием энергии для прокачивания протонов, анионов или катионов через мембрану против их электрохимических градиентов. Оба этих процесса всегда действуют таким образом, что внутри клетки создается более отрицательный заряд по сравнению с зарядом юне ее. [c.238]

    Большое значение для жизнедеятельности клеток имеет явление сопряженного транспорта веществ и ионов, которое заключается в том, что перенос одного вещества (иона) против электрохимического потенциала ( в гору ) обусловлен одновременным переносом другого иона через мембрану в направлении снижения электрохимического потенциала ( под гору ). Схематически это представлено на рис. 50. Работу транспортных АТФ-аз и перенос протонов при работе дыхательной цепи митохондрий часто называют первичным активным транспортом, а сопряженный с ним перенос веществ — вторичным активным транспортом. [c.122]

    Электрофоретический транспорт ионов приводит к тому, что катионы и анионы аккумулируются соответственно в отрицательно и положительно заряженных отсеках. Однако очевидно, что разделение веществ на катионы и анионы вряд ли может быть той целью, ради которой живая клетка тратит энергию на осмотическую работу. Один из путей, помогающих обойти ограничение простого электрофореза, состоит в превращении Агр-составляющей протонного потенциала в АрН. Известно, что Л-ф есть первичная форма Д хН, поскольку электрическая емкость мембраны меньше, чем рН-буфер-ная емкость разделенных мембраной растворов. Для превращения [c.148]

    А в самое последнее время были описаны мутантные формы фотосинтезирующих бактерий, не образующих ни сахар, ни АТФ. В этом случае превращение энергии света обрывалось на стадии генерации протонного потенциала, который уже не мог использоваться для синтеза АТФ. Это не значит, однако, что протонный потенциал, а стало быть, и свет вовсе бесполезны для такой бактерии они могли бы поддерживать транспорт веществ через мембрану, вращение жгутиков и другие потребляющие энергию протонного потенциала процессы. [c.117]

    В работах лабораторий Либермана п Скулачева расположение дыхательной цепи определялось по ее способности образовывать мембранный потенциал. В среду вводились различные доноры и акцепторы электронов, не проникающие сквозь мембрану. Оказалось, что эти вещества взаимодействуют лишь с цитохромом с в митохондриях. Установлено, что транспорт протонов и (или) электронов по дыхательной цепи действительно происходит. В других экспериментах определена локализация компонентов в мембране митохондрий. На рис. 13.10 показано вероятное расположение цепн. Согласно хемиосмотической гипотезе, любая сопрягающая система должна создавать электрохимический потенциал понов Н ". Действительно, опыты с проникающими синтетическими ионами показали возникновение А1 5 в митохондриях, СМЧ, хлоропластах (см. гл. 14) и мембранах бактерий. В то же время теория Митчелла встречается с трудностями и вызывает возражения. Блюменфельд приводит аргументы, показывающие невозможность построения машины Митчелла в конденсированной фазе. В такой машине АТФ-синтетаза использует разность концентраций протонов в водной фазе по обе стороны мембраны для выполнения внешней работы. Это — энтропийная машина, получающая энергию из термостата в форме кинетической знергип протонов. Нротоны движутся преимущественно по градиенту концентраций и передают свои импульсы подвижным частям машины разность потенциалов А1 5 расходуется на создание [c.437]


Рис. 7.10. Синтез АТР как обратимый протонный насос. Согласно Митче.ч-лу, во время окислительного электронного транспорта протоны проникают через мембрану. Созданный градиент pH и мембранный потенциал способствуют синтезу АТР. И наоборот, градиент pH образуется при гидролизе АТР [12]. (Воспроизводится с разрешения А. Ленинджера.) Рис. 7.10. Синтез АТР как <a href="/info/1565603">обратимый протонный</a> насос. Согласно Митче.ч-лу, во <a href="/info/799054">время окислительного</a> <a href="/info/1418899">электронного транспорта протоны</a> проникают <a href="/info/152902">через мембрану</a>. <a href="/info/445420">Созданный градиент</a> pH и <a href="/info/4005">мембранный потенциал</a> способствуют синтезу АТР. И наоборот, градиент pH образуется при гидролизе АТР [12]. (Воспроизводится с разрешения А. Ленинджера.)
    Активный ионный транспорт в нервной клетке имеет множество функций поддерживает мембранный потенциал возбудимой мембраны (натрий-калиевый насос), регулирует внутриклеточную концентрацию Са + ( a +,Mg2+-ATPaзa) и обеспечивает клетку энергией (РгАТРаза, протонный насос). Натрий-калиевый насос является электрогенным — на каждые три иона На+, транспортируемых наружу, направляются внутрь два иона К" " таким образом, при каледом цикле из клетки забирается по одному положительному заряду. АТР поставляет энергию для обеспечения активного транспорта (против ионного градиента), т. е. осуществляет связь между передачей импульса и метаболизмом нервной клетки. Система ионного транспорта включает АТРазу и ионофор — сложные мембранные белки. Один из белковых компонентов подвергается промежуточному фосфорили-рованию с помощью АТР. Гликозид дигиталиса и уабаин (стро- [c.184]

    Необходимо отметить, что натриевые насосы как системы активного транспорта характерны для структурных мембран клетки, первыми при-нимаюшими на себя воздействие внешней среды и не требующими для функционирования высокого электрического сопротивления. Иначе обстоит дело с сопрягающими мембранами, выполняющими главную функцию —аккумулирование энергии —и требующими высокого электрического сопротивления [15, 33]. В этом случае действуют протонные насосы, которые служат главными узлами механизма сопряжения процессов окисления и фосфорилирования при генерации мембранного потенциала дыхательной цепью и АТФ-азой. При этом одна система разделяет водород на Н+ и /, а вторая — молекулу НгО, гидролизующей АТФ, на Н+ и НО-. [c.432]

    В функционировании биоэнергетических систем важное место принадлежит транспорту протонов. Перенос электронов в энергосопрягающих мембранах митохондрий, хлоропластов и бактерий сопровождается трансмембранным переносом Н+ и образованием градиента электрохимического потенциала этого иона А[ан+5 который включает электрический (мембранный потенциал) и концентрационный (градиент pH) компоненты  [c.162]

    В конечном счете в ходе окислительно-восстановительных превращений переносчиков на внутренней стороне мембраны тилакоида постепенно накапливаются протоны и возникает мембранный протонный потенциал. Градиент pH между внутренней и внешней фазами тилакоида составляет, по данным Ягендорфа, примерно 2,7, а мембранный потенциал 50 мВ. Процесс фосфорилирования сопровождается перераспределением ионов Н+, противоположным тому, которое возникает при транспорте электронов. По Митчелу, для синтеза одной молекулы АТФ из АДФ и неорганического фосфата достаточно перемещения через мембрану двух протонов (см. схему). Предполагается, что при этом за счет энергии мембранного потенциала происходит активация фермент-суб-стратного комплекса АТФ-синтетазы, или, как ее называют в последнее время, протонной АТФ-азы. [c.105]

    В аппарате Гольджи сомы нейрона формируются мембранные образования в виде пузырьков, не заполнеиных медиатором (фракция СПд). Эти пузырьки направляются в пресинаптическое окончание с помощью системы быстрого аксонного транспорта. В пресинаптическом окончании пузырьки заполняются медиаторами (АХ и АТФ) посредством АТФ-зависимо-го протонного насоса. Молекулы протонной АТФазы входят в состав мембраны синаптических пузырьков и поддерживают определенный уровень мембранного потенциала. Мембрана [c.213]

    Говоря об энергетическом состоянии клетки, следует отметить также важную роль энергизации мембраны, которая возникает в результате работы так называемого протонного насоса. Этот механизм, существующий в различных прокариотических и эукариотических мембранах, использует энергию окисления, света и гидролиза АТФ для откачивания протонов из клетки через мембрану. В результате создаются градиент концентрации ионов водорода (АрН) и электрический мембранный потенциал (АЧ ), которые в совокупности образуют трансмембранный электрохимический потенциал ионов водорода (Др1н+). Энергия, запасенная в этом потенциале (протонодвижущая сила), используется в процессах синтеза АТФ, активного транспорта и движения клеток с помощью жгутиков. Кроме того, со значением мембранного потенциала может быть связана активность некоторых ключевых ферментов, контролирующих, в частности, синтез и стабильность таких регуляторных молекул, как ффГфф и цАМФ. [c.49]

    Химическая гипотеза постулирует прямое химическое сопряжение окисление приводит к образованию высокоэнергетического интермедиата, который является движущей силой фосфорилирования [34]. Поскольку известно, что в митохондриях могут поддерживаться градиенты концентрации ионов (в том числе протонов) [23], в эту гипотезу обычно включают и сопряжение с транспортом ионов за счет расщепления высокоэнергетического интермедиата. В отличие от этого хемиосмоти-ческая гипотеза постулирует, что окисление сопряжено с выбросом протонов из митохондрий [24,25]. Образующийся при этом градиент электрохимического потенциала протонов движет фосфорилирование в мембранах путем обращения работы АТФазного протонного насоса. Градиенты концентрации катионов рассматриваются как прямой результат электрического мембранного потенциала, возникающего благодаря переносу протонов. [c.312]

    Свойства белковых систем, катализирующих транспорт через сопрягающие мембраны, обычно сильно отличаются от свойств бислойных участков как в присутствии, так и в отсутствие ионофоров. Транспортные белки обладают многими свойствами, присущими ферментам они проявляют стереоспецифичность, часто их можно специфически ингибировать, они генетически детерминированы. Последнее обстоятельство делает невозможной ту степень обобщения, которая применима к транспорту через бислой. Например, если РССР (рис. 2.5) индуцирует протонную проводимость в митохондриях, то можно смело полагать, что его эффект будет тем же в случае хлоропластов, бактерий или искусственного бислоя. В отличие от РССР транспортный белок может быть специфическим не только для данной органеллы, но и для органеллы из определенной ткани. Например, переносчик цитрата существует в митохондриях из печени, где он участвует в переносе промежуточных соединений синтеза жирных кислот (разд. 8.3), но отсутствует в митохондриях из сердца. Иногда утверждают, что для белковых транспортных систем характерна кинетика насыщения. Хотя в некоторых случаях это может быть верным, в целом кинетика транспортных процессов настолько сложна (особенно если они зависят от мембранного потенциала), что интерпретация ее требует большой осторожности. [c.40]

    Различные варианты хемносмотических механизмов транспорта представлены на рис. 8.6. Простейший из них — это унипорт положительно заряженных метаболитов, например лизина, когда равновесное распределение катиона определяется величиной мембранного потенциала. Незаряженные метаболиты, такие, как изолейцин, могут транспортироваться в симпорте с протоном, так что их накопление определяется величиной суммарного А лн+. Анионные субстраты также могут переноситься в симпорте с протоном, но их распределение зависит лишь от величины АрН. Нет никаких оснований, чтобы а priori исключать возможность существования различных стехиометрических соотношений при транспорте протонов и метаболитов (Rottenberg, 1976). [c.171]

    Процессы в хлоропластах при переходе к фотосинтезу. При освещении листьев хлоропласты уже через несколько минут начинают уменьшаться в объеме, становясь более плоскими (дисковидными). Тилакоиды и граны сдвигаются и уплотняются. Фотоиндуцируемое сокращение хлоропластов объясняется возникновением трансмембранных протонных градиентов и изменением электрического потенциала мембран хлоропластов. Определенная степень сжатия хлоропласта необходима для эффективной работы электронтранспортной цепи и для ее сопряжения с образованием АТР. Транспорт протонов внутрь тилакоидов приводит к подкислению их внутренней полости до pH 5,0-5,5 и одновременному подщелачиванию стромы хлоропласта от pH 7,0 в темноте и до pH 8,0 на свету. Вход ионов Н в тилакоиды сопровождается выходом из них в строму ионов Mg . [c.100]

    Хемиосмотическая теория сопряжения. В настоящее время наибольгним признанием пользуется хемиосмотическая теория английского биохимика П. Митчелла (1961). Он высказал предположение, что поток электронов через систему молекул-переносчиков сопровождается транспортом ионов через внутреннюю мембрану митохондрий. В результате на мембране создается электрохимический потенциал ионов Н , включающий химический, или осмотический, градиент (ДрН) и электрический градиент (мембранный потенциал). Согласно хемиосмотической теории электрохимический трансмембранный потенциал ионов и является источником энергии для синтеза АТР за счет обращения транспорта ионов через протонный канал мембранной -АТРазы. [c.158]

    Дыхательные ансамбли включают в себя многочисленные переносчики электронов, в частности цитохромы. Многоступенчатый транспорт электронов от NADH или FADH2 к О2 по цепи этих переносчиков приводит к выбросу протонов из митохондриального матрикса и генерированию мембранного потенциала (протонодвижущей силы). Протоны перекачиваются тремя видами электронпереносящих комплексов. В процессе обратного тока протонов в митохондриальный матрикс при посредстве [c.71]

    Система тилакоидных мембран хлоропласта превраш,а-ет энергию света в форму, которая может быть использована для осушествления химических реакций. Целиком процесс фотосинтеза был схематически представлен на рис. 10.1. В приводимом ниже обсуждении фотосинтеза рассматриваются три стадии. Первая стадия представляет собой световую реакцию — первичный процесс, с помош,ью которого энергия света поглощается светособирающими пигментами и переносится на фотохимические реакционные центры. На второй стадии поглощенная энергия света используется для осуществления транспорта электронов от воды до NADP+. В ходе электронного транспорта устанавливается градиент заряда, или концентрации протонов, через функциональные везикулы мембраны. Третья стадия представляет собой путь, по которому NADPH, образованный электронтранспортной системой, и АТР, генерируемый за счет различий электрохимического потенциала протонного градиента, используются для фиксации СО2 и синтеза углеводов. Хотя в целях упрощения процесс фотосинтеза разбит на три стадии, необходимо помнить, что поглощение света, транспорт электронов и генерация электрохимического градиента в действительности очень тесно сопряжены. [c.333]

    Согласно теории Митчелла, перенос протонов и электронов сквозь мембрану не приводит к большим изменениям рП. Транспорт электронов, т. е. окислительный процесс, прекращается под действием электрического поля, создаваемого избытком отрицательных зарядов на другой стороне мембраны. Перенос электронов активируется вновь при уменьшении этого поля, т. е. мемт бранного потенциала. Этого можно достичь перемещением катионов через мембрану. В результате должен возникнуть градиент рП, так как перенос каждого одновалентного катиона должен со- [c.436]

    Бактериальное окисление сульфидных минералов — электрохимический процесс. В присутствии нескольких сульфидов создаются гальванические пары, причем микроорганизмы окисляют прежде всего сульфид с меньшим электродным потенциалом. Это обусловливает возможность избирательного окисления отдельных минералов в концентратах. Окисляемое железо (II) поступает в пери-плазматическое пространство клеточной стенки, где электрон акцептируется медьсодержащим белком — рустицианином, а затем переносится по цитохромной цепи через цитоплазматическую мембрану. Возникающий при транспорте электронов и протонов потенциал обеспечивает синтез молекул аденозинтрифосфата (АТФ). [c.151]

    Все теории, объясняюцще активный транспорт, включают представление о наличии в мембране специфических транспортных белков. Эти белки получили названия, указывающие на их функцию пермеазы, транслоказы, белки-транслокаторы, переносчики. Транспортные процессы отличаются друг от друга главным образом тем, что служит для них источником энергии-протонный потенциал Ар (рис. 7.20), АТР или фосфоенолпируват (рис. 7.18). [c.259]

    Представление об участии специфических белков-переносчиков в транспорте ионов подтверждают данные о действии ряда антибиотиков и синтетических веществ. Речь идет о ионофорах. Это соединения с относительно небольшой молекулярной массой (500-2000), молекулы которых снаружи гидрофобны, а внутри гидрофильны. Обладая гидрофобными свойствами, они диффундируют в липидную мембрану. Из антибиотиков-ионофоров наиболее, 1звестен валиномицин он диффундирует внутрь мембраны и катализирует транспорт (унипорт) ионов К , Сз , КЬ" или КН . Поэтому присутствие таких катионов в суспензионной среде приводит к выравниванию заряда по обе стороны мембраны (как бы короткому замыканию) и тем самым к падению протонного потенциала. Другие ио-нофоры образуют каналы, по которым могут проходить ионы. Существуют также синтетические соединения, повышающие протонную проводимость мембран наиболее известный переносчик протонов - карбонилцианид-и-трифторме-токсифенилгидразон. Он действует как разобщитель -нарушает сопряжение синтеза АТР с транспортом электронов, перенося в клетку протоны в обход АТР-синтазы. Изучение мембранного транспорта привело к важным результатам, которые согласуются с хемиосмотической теорией преобразования энергии и подкрепляют ее. [c.260]

    Хемиосмотическая гипотеза Митчелла связывает образование АТФ из АДФ с возникновением отрицательного градиента pH в хлоропластах но отношению к внешней среде при транспорте электронов под действием света (протонная помпа) [49]. Трансмембранный градиент pH в хлоропластах создает электрохимический потенциал, обеспечивающий фосфорилирование. Ингибиторы фосфорилирования и так называемые разобщители (среди них ионы аммония) могут уменьшить трансмембранный градиент pH из-за повышения проницаемости мембран хлоропластов, а не разрушать промежуточный X. Доводом в пользу хемиосмотической гипотезы является то, что синтез АДФ—>-АТФ возможен и в темноте, без всякого действия света, если в изолированных хлоропластах создать искусственно градиент pH [50]. Для этого их сначала помещают в раствор с низким pH, а затем быстро в раствор с высоким pH. Существует мнение о конкурентном образовании АТФ и трансмембранного протонного градиента из макроэргиче-ского соединения X  [c.34]

    Переносчики располагаются в мембране асимметрично, по разные стороны мембраны (рис. 80). При переносе электрона одновременно происходит и транслокация протона, который высвобождается на внешней стороне мембраны. Так как мембрана непроницаема для протонов, во внешней среде их становится больше и наводится трансмембранный потенциал, имеющий электрическую и химическую, составляющие Д л.н+ = А1 / + АрН (может быть АрЫа). В мембране наряду с переносчиками содержится АТФазная система, образующая АТФ за счет закачивания протонов протонная помпа ). Часть трансмембранного потенциала расходуется непосредственно на транспорт веществ в клетку и движение жгутиков. С другой стороны, при необходимости АТФазная система может с затратой энергии наводить трансмембранный потенциал. [c.110]

Рис. 1. Схема превращения энергии в биомембранах [8ки1асЬеу, 1981] Цепь электронного транспорта (1), используя энергию окислительно-восстано-вительных реакций, транспортирует протоны через мембрану против их электрохимического потенциала. Образующаяся таким образом трансмембранная разность электрохимических потенциалов ионов водорода используется АТФ-синтетазой (2) для синтеза АТФ из АДФ и Фд Рис. 1. <a href="/info/103939">Схема превращения</a> энергии в биомембранах [8ки1асЬеу, 1981] <a href="/info/169405">Цепь электронного транспорта</a> (1), <a href="/info/1435378">используя энергию</a> <a href="/info/1647706">окислительно-восстано-вительных</a> реакций, транспортирует <a href="/info/1592783">протоны через</a> мембрану против их <a href="/info/10734">электрохимического потенциала</a>. <a href="/info/461013">Образующаяся таким образом</a> <a href="/info/1388493">трансмембранная разность</a> электрохимических потенциалов <a href="/info/7816">ионов водорода</a> используется АТФ-синтетазой (2) для синтеза АТФ из АДФ и Фд
    Образующийся градиент электрохимического потенциала Ацн+ расходуется на синтез АТР из ADP и Рн. При этом могут быть использованы как Ai 3, так и ДрН, что определяется конкретными условиями в клетке. В процессе окисления, по Митчеллу, от субстрата переносится 2е через мембрану к акцептору, причем 2Н+ субстрата остаются по одну сторону непроницаемой для протонов мембраны, а 2 Н+ по другую сторону мембраны присоединяются из водной фазы к акцептору— кислороду. В дальнейшем перераспределение протонов используется мембранной АТР-синтазой для синтеза АТР. Концепция получила многочисленные подтверждения и на ее основе были предприняты попытки анализировать такие явления как фотосинтез [20], транспорт ионов и метаболитов [22], ферментативный катализ [25]. В работе [23] развивается идея о латеральном распространении Aixh+ вдоль мембраны как универсальной формы переноса энергии, которая существует наряду с менее подвижной формой — АТР. Детальному анализу многочисленной литературы этого направления посвящен ряд обзоров [52, 53, 119], а также монография [16]. [c.39]

    Механизм окисления Fe +, S и S° бактериями также изучается. При окислении двухвалентного железа по реакции 12 оно поступает в периплазматическое пространство клетки, где электрон, по данным Ингледью, акцептируется медьсодержащим белком рустицианином, а затем переносится по цитохромной цепи через цитоплазматическую мембрану (рис. 33,5, А). При переносе двух электронов на мембране возникает потенциал в 120 мВ, а при транспорте двух протонов — около 210 мВ. Суммарный по- [c.644]

    Иногда движущей силой транспорта оказываются обе состав--ляющие протонного потенциала Ai)) и АрН. Это наблюдается, например, при переносе веществ, не обладающих ни зарядом, ни кис-" лотно-основными свойствами. Такие соединения могут переноситься вместе с протоном или обмениваться на протон, используя энергию общей A(iH. Так, аккумуляция лактозы бактериями осуществляется посредством лактоза, Н+-симпортера (см. рис. 41, система 4 подробнее см. разд. 5.2.7). Вакуоли корнеплодов сахарной свеклы накапливают сахарозу при помощи (сахароза/Н+)-антипортера. Причиной, по которой в данном случае используется антипортер, а не симпортер, является то обстоятельство, что A iH на мембране вакуоли направлена в другую сторону, чем на бактериальной мембране, [c.150]

    Протонный потенциал питает митохондриальную АТФ-синтетазу, поддерживает транспорт АТФ, АДФ, фосфата и карбоновых кислот через мембрану митохондрии. Кроме того, он разворачивает вспять определенные окислительные реакции, которые ставовятся в результате не потребителями, а поставщиками водорода, используемого затем во многих восстановительных синтезах. Если добавить к этому процессы транспорта ионов [c.166]

    Во многих случаях для переноса веществ через мембрану попользуется энергия электрохимического потенциала, например протондвижущая сила, создаваемая АТФазой, которая выводит из клетки протоны. У микроорганизмов этот электрохимический потенциал разряжается на перенос сахаров из среды в клетку против 10000-кратного градиента концентраций. У живот--ных активный транспорт аминокислот и моносахаридов идет за счет энергии пассивных потоков ионо в Ма+ и Этот транспорт называют вторичноактивным, так [c.31]


Смотреть страницы где упоминается термин Мембранный потенциал и транспорт протонов: [c.216]    [c.447]    [c.20]    [c.24]    [c.136]    [c.107]    [c.447]    [c.313]    [c.390]    [c.155]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Мембранные

Мембранный потенциал



© 2024 chem21.info Реклама на сайте