Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хемиосмотическая гипотеза окисления и фосфорилирования

    Хемиосмотическая гипотеза энергетического сопряжения, в живой клетке получила в последнее время много экспериментальных подтверждений. Эта гипотеза, которую многие специалисты называют уже теорией, не отрицает существования предшественника АТФ в системе окислительного фосфорилирования, но свойство унифицированной формы энергии относит к трансмембранному электрохимическому потенциалу ионов водорода Н+ ((Лцн ). Таким образом, клетка имеет две формы унифицированной энергии — химическую в форме АТФ и энергию в форме мембранного потенциала. Через мембранный потенциал энергия окисления трансформируется затем в дмическую работу (синтез АТФ, обратный перенос электронов в других местах энергетического сопряжения), в осмотическую работу (транспорт ионов против градиента через мембрану), в тепло. Главная же функция мембранного потенциала — сопряжение процессов окисления и фосфорилирования. [c.409]


    Хемиосмотическая теория сопряжения окисления и фосфорилирования. Эта гипотеза предложена в 1961 г П. Митчеллом причем значительный вклад в ее доказательство был сделан В. П. Скулачевым с соавторами. Согласно этой теории, фактором, сопрягающим окисление с фосфорилированием, является электрохимический, протонный потенциал АцН , возникающий на внутренней мембране митохондрий в процессе транспорта электронов. При этом предполагается, что мембрана непроницаема для ионов, особенно протонов, их транслокация с внутренней стороны мембраны (из матрикса) на наружную сторону внутренней мембраны митохондрий осуществляется за счет процесса окисления в дыхательной цепи, т. е. транспорта высокоэнергетических электронов. Возникающий электрохимический потенциал АцН+ является аддитивным он складывается из химического потенциала АрН и электрического со знаком (+) на наружной стороне мембраны (Avj/)  [c.203]

    ХЕМИОСМОТИЧЕСКАЯ ГИПОТЕЗА ОКИСЛЕНИЯ И ФОСФОРИЛИРОВАНИЯ [c.263]

    Главные этапы развития биохимии связаны с именами ряда ученых, многие из которых работали в России А.Н.Баха (перекис-ная теория биологического окисления), В.И.Палладина (теория дегидрирования), В.А.Энгельгарда (открытие АТФ), А.И.Опарина (гипотеза возникновения жизни), А.Н.Белозерского (исследование нуклеиновых кислот), К.Функа (витамины, авитаминоз), Г.Эмбдена и К.Мейергофа (механизм гликолиза), Г.Кребса (цикл трикарбоновых кислот), А.Сцент-Дьёрди (основы биоэнергетики), А.Ленинджера (окислительное фосфорилирование), П. Митчелла (хемиосмотическая теория) и многих других современных биохимиков. [c.8]

    Как и хемиосмотическая, конформационная гипотеза не является окончательно доказанной, хотя в ее пользу и говорят некоторые факты. Конформации белковых носителей окисленных и восстановленных переносчиков различаются между собой. При запускании транспорта электронов в мембранах наблюдаются структурные перестройки митохондрий и хлоропластов, регистрируемые по сокращению их объема. Установлено, что конформационные перестройки хлоропластов происходят только в том случае, если транспорт электронов сопряжен с фосфорилированием. В присутствии ингибиторов фосфорилирования сокращения объема хлоропластов не наблюдается. [c.107]

    Хемиосмотическая гипотеза объясняет необходимость мембран и механизм действия веществ — разобщителей окисления и фосфорилирования (протоиофоры). Последние служат переносчиками протонов через мембрану. При этом перенос их осуществляется па той стороне мембраны, где дыхание создает избыток ионов Н+, затем происходит их диффузия через мембрану и освобождение Н+ в противоположном отсеке, где водородные иоиы в дефиците. [c.264]


    В 1961 г. английский биохимик П. Митчел выдвинул хемиосмо-тическую (электрохимическую) гипотезу энергетического сопряжения окисления и фосфорилирования, которая в дальнейшем получила подтверждение и развитие во многом благодаря работам советских ученых (В. П. Скулачев, Е. А. Либерман). Принцип хемиосмотического сопряжения иллюстрирует рис. VI. 14. Субстрат АНг —донор водорода — окисляется на активном центре фермента, встроенного на внешней стороне мембраны митохондрии. При этом 2Н+ и А выбрасываются в окружающую среду, а два электрона переносятся на внутреннюю сторону мембраны по так называемой дыхательной цепи, ориентированной поперек мембраны. Локализованный на внутренней стороне переносчик электронов передает электроны акцептору водорода В (например, кислороду), который присоединяет 2Н+ из внутримитохондриального матрикса. Таким образом, окисление одной молекулы АНг приводит к возникновению 2Н+ во внешнем пространстве и исчезновению 2Н+ из внутреннего пространства митохондрии. Возникший градиент ионов водорода генерирует трансмембранный потенциал, который оказывается достаточным по величине для осуществления реакции фосфорилирования. Последняя состоит во взаимодействии АДФ с фосфатом Ф и приводит к образованию АТФ с поглощением 2Н+ из внешнего пространства и выделением 2Н+ в матрикс. Величина трансмембранного потенциала сравнительно 160 [c.160]

    Н -АТФаза. Обратимая протон-траислоцирующая АТФаза, или Н -АТФаза, катализирует последний этап окислительного и фотосинтетического фосфорилирования а митохондриях, хлоропластах и бактериях. Согласно хемиосмотической гипотезе Ti. Митчелла, постулированной им в (%1 г. и получившей к настоящему времени множество экспериментальных подтверждений, дыхательная или фотосинтезирующая цепь, асимметрично расположенные в мембране, генерируют разность протонных потенциалов на сопрягающей мембране. Обратный транспорт протонов посредством Н -АТФазы обусловливает сиитез АТР из ADP и неорганического фосфата. Поэтому этот фермент иногда называют еще АТФ-синтетазой. Следует отметить, что существуют и другие теории сопряжения окисления и фосфорилирования (Ф. Липман, Э. Слейтер, П. Бойер, Р. Вильямс и др.). Одиако они не получили столь широкого распространения, как гипотеза П. Митчелла. [c.619]

    К этим двум случаям применимы графики на рис. 13.5 и 13.6, которые соответствуют рис. 4.2 и 4.3. Путем введения уравнения (13.24) можно показать, что в рамках хемиосмотической гипотезы при Арн = 0 окисление и фосфорилирование эффективно разобщаются, так что в области линейности феноменологических уравнений /р//о прямо пропорционально Лр Мо. как показано на рис. 13.5. При ненулевом, но постоянном значении Ар1н/Ло пропорциональность утрачивается, но линейность оста- [c.324]

    За прогиедший период хемиосмотическая гипотеза Митчелла получила целый ряд экспериментальных подтверждений. Одним из доказательств роли протонного градиента в образовании АТР при окислительном фосфорилировании может служить разобщающее действие на этот процесс некоторых веществ. Известно, что 2,4-динитрофенол (2,4-ДНФ) подавляет синтез АТР, но стимулирует транспорт электронов (поглощение О2), т. е. разобщает дыхание (окисление) и фосфорилирование. Митчелл предположил, что такое действие 2,4-ДНФ связано с тем, что он переносит протоны через мембрану (т. е. является протонофором) и поэтому разряжает ее. Это предположение полностью подтвердилось. Оказалось, что разные по своей химической природе вещества, разобщающие окисление и фосфорилирование, сходны в том, что, во-первых, они растворимы в липидной фазе мембраны, а, во-вторых, это слабые кислоты, т. е. легко приобретают и теряют протон в зависимости от pH среды. В. П. Скулачев на искусственных фосфолипидных мембранах показал, что чем легче вещество переносит протоны через мембрану, тем сильнее разобщает эти процессы. Другое экспериментальное подтверждение роли протонного градиента в фосфорилировании было получено Митчеллом, который сообщил о синтезе АТР в митохондриях в результате замены щелочной инкубационной среды на кислую (т. е. в условиях искусственно созданного трансмембранного градиента ионов Н ). [c.159]

    Проблема сопряжения окисления с фосфорилированием необыкновенно сложна и далека еще от окончательного разрешения. Ранние гипотезы по этому вопросу гипотеза химических переносчиков (Е. Слейтер, 1953) и конформационная гипотеза (П. Бойер, 1964) представляют в настоящее время лишь исторический интерес, хотя отдельные элементы той и другой в некоторой мере присутствуют в общепризнанной сейчас хемиосмотической гипотезе П. Митчела, поддержанной и развитой в нашей стране благодаря трудам В. П. Скулачева и сотр. [c.424]


Смотреть страницы где упоминается термин Хемиосмотическая гипотеза окисления и фосфорилирования: [c.325]    [c.132]   
Смотреть главы в:

Физиология растений Изд.3 -> Хемиосмотическая гипотеза окисления и фосфорилирования




ПОИСК





Смотрите так же термины и статьи:

Гипотеза хемиосмотическая

Гипотезы

Фосфорилирование



© 2025 chem21.info Реклама на сайте