Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фокальная плоскость

    Основными частями спектрального прибора (рис. 3.7) являются входная ш,ель 5, освещаемая исследуемым излучением объектив коллиматора 0, в фокальной плоскости которого расположена входная щель 5 диспергирующее устройство О, работающее в параллельных пучках лучей фокусирующий объектив Ог, создающий в своей фокальной поверхности Р монохроматические изображения входной щели, совокупность которых и образует спектр. В качестве диспергирующего элемента, как правило, используют либо призмы, либо дифракционные решетки. [c.67]


Рис. 2.2. Оптическая схема спектрального прибора О — конденсор 51 — входная щель 1 — фокусное расстояние коллиматора 0 — объектив коллиматора ДС — диспергирующий элемент Ог — объектив камеры <11 — линейное расстояние иа фокальной плоскости между двумя линиями с длинами волн и Лг, отклоняющимися на угол ф1 и фа соответственно после прохождения через диспергирующий элемент ф — угловое расстояние между ф1 и фг е — угол наклона фокальной плоскости к оптической оси объектива Рис. 2.2. <a href="/info/1599032">Оптическая схема спектрального прибора</a> О — конденсор 51 — <a href="/info/705791">входная щель</a> 1 — <a href="/info/142434">фокусное расстояние</a> коллиматора 0 — объектив коллиматора ДС — <a href="/info/705823">диспергирующий элемент</a> Ог — <a href="/info/1594516">объектив камеры</a> <11 — линейное расстояние иа фокальной плоскости между двумя линиями с <a href="/info/2957">длинами волн</a> и Лг, отклоняющимися на угол ф1 и фа соответственно после <a href="/info/566722">прохождения через</a> <a href="/info/705823">диспергирующий элемент</a> ф — <a href="/info/128887">угловое расстояние</a> между ф1 и фг е — <a href="/info/135138">угол наклона</a> фокальной плоскости к оптической оси объектива
    Пьезоэлектрические заряды выступают на поверхности кварцевой пластинки в тех же точках, в которых имеется деформация пластинки. Поэтому картина распределения пьезоэлектрических зарядов на поверхности кварцевой пластинки в точности соответствует ультразвуковому полю в фокальной плоскости линзы, действующему на кварцевую пластинку. Так как конфигурация ультразвукового поля за фокальной плоскостью соответствует изображению рассматриваемого предмета, то на экране трубки можно видеть непосредственно изображение предмета. [c.127]

    Метод, основан на получении эмиссионных спектров анализируемого вещества на фотографической пластинке, помещенной в фокальной плоскости камерного объектива спектрального прибора (спектрографы различных типов). Спектральные линии элементов (качественный анализ) в полученном спектре идентифицируют относительно спектра известного элемента (обычно железа), фотографируемого рядом со спектром анализируемого вещества. В специальных атласах спектральных линий приведены фотографии спектров л<елеза, где относительно спектральных линий железа указано положение спектральных линий всех элементов с их длинами волн. Для проведения качественного анализа используют спектропроекторы или измерительные микроскопы. Количественный анализ проводят по результатам измерения относительных почернений спектральных линий гомологической пары и их сравнением с соответствующими величинами стандартных образцов. Почернения спектральных линий измеряют при помощи микрофотометров фотоэлектрическим способом. [c.25]


    Гелиотермический источник — теплота, полученная от прямого излучения солнца. Распределение энергии в фокальной плоскости зеркала описывается формулой  [c.53]

    Дисперсионная кривая индивидуальна для каждого прибора и выражает зависимость между отсчетом на барабане микрометрического винта п, равномерно перемещающего спектр в фокальной плоскости окуляра, и длиной волны спектральной линии, находящейся в отсчетном положении  [c.16]

    Для анализа используют спектрограф ИСП-30 (рис. 1.7). Полихроматическое излучение плазмы, проходя через шель 1, попадает на зеркальный коллиматорный объектив 2, который поворачивает лучи и обеспечивает равномерное освещение призмы 3. Разложенный по длинам волн свет собирается камерным объективом 4 в его фокальной плоскости, отражается зеркалом 5 и попадает на фотографическую пластинку 6. Одинаковое почернение спектральной линии по высоте является необходимым условием количественных измерений и получается только при равномерном освещении щели спектрографа источником излучения. Наиболее совершенна в этом случае трехлинзовая осветительная система (рис. 1.8). Линза 2 дает несколько увеличенное изображение источника света 1 на проме/куточной диафрагме 3, которая позволяет вырезать различные зоны свечения источника эмиссии, а также экранировать раскаленные концы электродов и менять интенсивность светового потока. Конденсор 4, расположенный за диафрагмой 3, проецирует изображение линзы 2 на щель спектрографа в виде равномерно освещенного круга. Линза 5 дает увеличенное изображение выреза диафрагмы 3 на объективе 7 коллиматора. Таким образом, конденсоры 2, 4 и 5 играют роль вторичных полихроматических источников света. [c.26]

    Во время горения дуги следует также проверять чистоту щели, рассматривая в лупу спектр со стороны кассеты. При этом глаз нужно располагать у правой части фокальной плоскости, где расположен видимый участок спектра. Загрязнение щели пылью обнаруживается по узким темным полосам, пересекающим весь спектр. [c.109]

    Нить лампы 1 (рис. 4.28) проектируется конденсором 2 через входную щель 3 в плоскости объектива 4 коллиматора. Входная щель расположена в фокальной плоскости объектива. Выходящий из него параллельный поток света проходит диспергирующую призму 5 и разлагается в спектр. Объектив 6 первого монохроматора дает спектральное изображение входной щели в плоскости средней щели по линии А—А. Средняя щель двойного монохроматора, образованная зеркалом 7 и ножом 8, вырезает участок спектра, который проходит во второй монохроматор и проектируется в плоскости выходной щели 9. [c.216]

    Принципиальная оптическая схема приборов дана на рис.. 33, а внешний вид — на рнс. 34. Свет от источника 1 (см. рис. 33), установленного в специальном кожухе, падает на входную щель 2, расположенную в фокальной плоскости объектива-коллиматора 3. Выходящий из него параллельный пучок света проходит первую диспергирующую призму 4 и разлагается в спектр. [c.85]

    Фокальная плоскость объек- [c.156]

    Свет от ртутно-кварцевой лампы 1 (рис. 27) через тепловой 2 и световой 3 фильтры попадает на кювету 4 с исследуемым веществом. Излучение, рассеянное веществом, конденсируется линзой конденсора 5 на щель спектрографа 6. На оправе конденсора крепятся два раздвижных кожуха, предотвращающих попадание света из помещения в спектрограф. Ширина щели регулируется от О до 0,3 мм при помощи микрометрического винта с ценой деления 0,001 мм. Щель находится в фокальной плоскости объектива коллиматора 7. Щель рекомендуется устанавливать вращением маховичка в сторону ее увеличения. Высота щели ограничивается специальной диафрагмой с фигурными вырезами. [c.41]

    Для определения угла р служит зрительная труба 3 и микрометрическое отсчетное устройство (на рис. 66 не показано). При рассматривании вышедших из призмы лучей, [близких к предельному, поле зрения окуляра зрительной трубы 3 оказывается разделенным на освещенную и темную части, граница между которыми соответствует предельному лучу (рис. 67). (В фокальной плоскости окуляра зрительной трубы расположен визирный крест, который при измерениях наводят на границу раздела (см. рис. 67), изменяя угол наклона зрительной трубы к выходной грани [c.183]

    Принципиальная оптическая схема спектрального прибора приведена на рис. 26. От источника излучения 1 луч сложного спектрального состава, пройдя через кювету с образцом 2, поступает через входящую щель 3 в монохроматор 4, состоящий из фокусирующей оптики 5 и диспергирующей системы 6, которая может быть в виде призмы или дифракционной решетки, а затем через выходную щель 7 подается последовательно на приемник излучения 8 и регистрирующее устройство 9. Фокусирующая оптика и диспергирующая система создают в фокальной плоскости монохроматические изображения входящей щели, а совокупность этих изображений образует спектр. [c.53]

    Объектив зрительной трубы 9 фокусирует лучи разных длин волн в разных местах фокальной плоскости, т. е. создает изображение спектра. [c.184]

    Монохроматические составляющие спектра будут, таким образом, располагаться вдоль фокальной плоскости. В зависимости [c.18]

    Параметры /гис/ определяют с помощью окуляр-микрометра 3. В фокальной плоскости окуляра виитового окуляр-микрометра установлены неподвижная окулярная шкала, разделенная на 8 делений, и подвижная шкала с перекрестием и индексом в виде двух параллельных штрихов, расположенных точно над перекрестием. Подвижная шкала приводится в движение вращением барабана микрометрического [c.23]


    Ширина раскрытия щели обусловливает ширину ее монохроматического изображения в фокальной плоскости. Как было показано выше, оптическая система спектрального прибора формирует в фокальной плоскости монохроматическое изображение щели и [c.19]

    Бесконечно узкая щель, однако, не дает бесконечно узкого изображения в фокальной плоскости, даже если в качестве источника излучения использовать строго монохроматическое излучение. Это может быть объяснено явлениями дифракции, имеющими место на краях объективов, призмы, щели, любых диафрагм, находящихся в приборе, которые ограничивают проходящие пучки излучения. Каждому прибору соответствует свой суммарный эффект, т. е. каждый прибор по-своему уширяет строго монохроматическую линию. [c.20]

    Эффективным средством идентификации параметров и автоматизированного построения моделей пористых сред являются вычислительные комплексы, оснащенные средствами автоматического анализа изображения (ААИ). Принципиальная схема одного из таких вычислительных комплексов показана на рис. 3.3. При помощи передающего телевизионного сканирующего устройства изображение объекта может быть введено в цветном или чернобелом варианте непосредственно с плоскости наблюдения во всех ее видах, т. е., например, с фокальной плоскости окуляра оптического микроскопа, с экрана электронного микроскопа, с экрана телевизора, а также фотографических репродукций и др. Соответственно в схему ААИ может быть включен оптический микроскоп, электронный микроскоп (просвечивающий, эмиссионный или растровый), приемное телевизионное устройство, эпидиаскоп и т. п. Скорость работы современных ААИ более чем на 5 порядков превышает скорость работы человеческого глаза при значительно более высокой чувствительности (свыше 200 точек на [c.125]

    Луч света от источника 1 (рис. 40) проходит через коллиматор, состоящий из узкой щели 2 и объектива 3, а затем в виде узкого параллельного пучка проходит через диафрагму с двумя отверстиями 4, через камеры кюветы 5 и б, пластинки компенсатора 7 5 и объектив 9. Вследствие дифракции света на отверстиях диафрагмы 4 в фокальной плоскости Объектива 9 создается система интерференционны полос, которая на1блю1дается с помощью окуляра 10. [c.127]

    Стилоскопы. Стилоскопы обычно (кроме стилоскопа марки СЛ-3) снабжены преломляющим устройством, собранным по автоколлима-ционной схеме. На рис. 84 дана оптическая схема однопризменного автоколлимационного прибора. Поток света, проходящий через щель /, направляется поворотной призмой 2 на объектив 3. Затем луч падает на преломляющую призму 4 (с углом преломлений 30°), проходит ее и отражается от грани, на которую нанесен слой алюминия, действующий как плоское зеркало. После отражения луч вторично проходит призму 4 и падает опятчь на объектив 3, который в этом случае действует как камерный объектив, тогда как на пути света от щели I к призме 4 он выполнял роль коллиматорного объектива. Изобрал<ение щели получается на фокальной плоскости 5. Спектр наблюдают визуально при помощи окуляра. Для этого в поле зрения окуляра выво-дйт нужную область спектра поворотом призмы 4 при помощи механизма, связанного с барабаном, на который нанесена миллиметровая шкала. [c.231]

    У микроскопа Цейсса и Лейтца (ФРГ) детали конструкции и их расположение варьируют в зависимости от типа модели. Любой из упомянутых микроскопов может быть использован для исследования как в ортоскопи-ческом, 1ак и коноскопическом свете. При ортоскопическом наблюдении видимое изображение является истинным изображением полированной поверхности шлифа. При кбноскопии наблюдается изображение верхней фокальной плоскости объектива. [c.111]

    Микроинтерферометр Линника типа МИИ-4, предназначенный для непрозрачных объектов, имеет следующий ход лучей (рис. 55). Параллельный пучок лучей от коллиматора ра зделяется пластинкой 3 на два пучка одинаковой интенсивности. Пучок сравнения попадает на зеркало 7 и отражается вновь на пластинку 3. Другой пучок попадает на объект н также отражается отраженный пучок света несет информацию о состоянии отражающей поверхности. На пластинке 3 оба пучка соединяются снова в один пучок и интерферируют в фокальной плоскости линзы 4. Получаемую интерференционную картину наблюдают через окуляр. По профилю полос на интерференционной картине можно измерять глубину трещин, ступенек и т. д. Микроскоп МИИ-4 позволяет определять толщины от 0,03 до I мкм и фотографировать изображение. [c.123]

    Призма 5 (рис. 16) поворачивается п,ри вращении барабана 10 (рис. 17). При помощи индекса на выдвижной рейке 3 по спиральной щкале, разделенной на 3600 делений, можно установить такое положение призмы, при котором сквозь выходную щель будет проходить монохроматический световой поток с определенной длиной волны. Ножи входной щели (рис. 16), закрытой защитным стеклом 2 (рис. 17), -находятся в фокальной плоскости объектива коллиматора 6. Фокусное расстояние объектива коллиматора зависит от длины волны, поэто1му предусмотрена фокусировка коллиматора [c.36]

    Пластины кремния или кварца помещают на столик проектора и на их поверхность наносят микрошприцем каплю воды. Объем капли должен составлять от 0,5 до 1,0 мкл. Для получения четкого изображения на экране образец капли следует поместить в фокальной плоскости оптической системы проектора. Фиксирующими винтами проектора изображение на экране устанавливают на максимальную резкост1>. На экране наблюдают изображение нанесенной капли и зарисовывают ее форму на листе чистой бумаги. Затем проводят касательную к поверхности капли в точке, ограничивающей периметр капли, и измеряют угол между касательной и плоскостью подложки. Этот угол является исходным и характеризует начальную степень гидрофильности подложки. [c.81]

    ТЦель располагается в фокальной плоскости объектива коллиматора, на его оптической оси. При освещении щели светом от источника излучения из объектива коллиматора выходит параллельный пучок света от каждой точки щели. Сама щель должна быть определенным образом ориентирована по отношению к диспергирующему элементу. Так, при использовании в качестве диспергирующего элемента призмы высота (длина) щели должна быть параллельна преломляющему ребру, а при использовании дифракционной решетки (см. ниже) — штрихам решетки. Такое расположение дает паилучшее качество изображения спектра. [c.18]

    Свет от источника излучения проходит через щель, объективом коллиматора преобразуется в паралсльный пучок и после прохождения диспергирующего элемента трансформируется в совокупность монохроматических составляющих, каждая из которых объ-ектипном камеры фокусируется на фокальную плоскость. Следовательно, щель можно рассматривать как источник света для всего прибора, и в фокальной плоскости формируется совокупность монохроматических изображений щели. Эта совокупность и называется спектром. [c.18]


Смотреть страницы где упоминается термин Фокальная плоскость: [c.33]    [c.85]    [c.16]    [c.83]    [c.9]    [c.9]    [c.60]    [c.33]    [c.85]    [c.16]    [c.423]    [c.232]    [c.232]    [c.189]    [c.18]    [c.18]    [c.19]    [c.20]   
Физико-химические основы производства радиоэлектронной аппаратуры (1979) -- [ c.52 ]




ПОИСК







© 2025 chem21.info Реклама на сайте