Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дифракция света

    Двойственная природа света. Впервые двойственная корпускулярно-волновая природа была установлена для света. В первой половине прошлого века в ре ]ультате изучения явлений интерференции и дифракции света было экспериментально доказано, что свет представляет собой электромагнитные волны. Возникновение в определенных условиях явлений интерференции и дифракции - характерная особенность любого волнового процесса. Однако в XX в. стали известны многочисленные явления, свидетельствующие о том, что свет представляет собой поток материальных частиц. На основе представлений Планка о передаче лучистой энергии квантами Эйнштейн предложил гипотезу о световых квантах, названных фотонами. Корпускулярные свойства света особенно отчетливо проявляются в явлении фотоэффекта. [c.18]


    Вскоре было установлено, что представление об электроне как частице, подчиняющейся законам классической механики, является ошибочным. Изучение природы и распространения света показало, что он обладает как корпускулярными, так и волновыми свойствами. На первые указывает явление фотоэффекта, на вторые — явления интерференции и дифракции света. Корпускулярные свойства фотона выражаются уравнением Планка [c.45]

    Спектр, даваемый дифракционной решеткой, возникает вследствие дифракции света, проходящего через систему очень тонких щелей, и последующей интерференции дифрагированных лучей в точке наблюдения. Возникающие при этом максимумы интенсивности подчиняются уравнению  [c.68]

    Наряду с изучением рассеяния света дисперсной системой в целом применяются также методы, основанные на регистрации рассеяния (дифракции) света на единичных частицах. Этот метод — ультрамикроскопия — имел большое значение в развитии коллоидной химии. Для наблюдения рассеяния света отдельными частицами применяются оптические системы с темным полем. К их числу относятся ультрамикроскопы, в которых интенсивный сфокусированный световой поток направляется сбоку на исследуемую систему, а также конденсоры темного поля, которые используются в обычных микроскопах для создания бокового освещения. Регистрация светящихся точек, хорошо видимых на темном фоне и представляющих собой свет, рассеянный (дифрагированный) отдельными частицами, позволяет определить концентрацию частиц дисперсной фазы, наблюдать флуктуации их концентрации и броуновское движение. Такие опыты, проведенные Перреном, Сведбергом и рядом других ученых, явились подтверждением правильности теории броуновского движения (см. гл. V) и молекулярно-кинетической концепции в целом. С. И. Вавиловым был разработан иной метод изучения броуновского движения. В этом методе производилась фотосъемка частиц дисперсной фазы, находящихся в броуновском движении. Перемещение частиц приводило к тому, что их изображения на пластинках имели вид размазанных пятен в полном согласии с теорией броуновского движения средняя площадь этих пятен оказалась пропорциональной времени экспозиции. В этом методе удается фиксировать одновременно несколько частиц, что облегчает получение необходимого для статистического усреднения большого количества экспериментальных результатов. [c.171]

Рис. 8. Дифракция света а —схема, поясняющая возникновение дифракции (>1 — ширина щели О — угол дифракции) б — зависимость интенсивности света от угла наблюдения 0 а — дифракционная картина при разной ширине щели (в мм) Рис. 8. Дифракция света а —схема, поясняющая <a href="/info/479018">возникновение дифракции</a> (>1 — <a href="/info/449880">ширина щели</a> О — <a href="/info/141181">угол дифракции</a>) б — <a href="/info/71530">зависимость интенсивности</a> света от угла наблюдения 0 а — <a href="/info/128865">дифракционная картина</a> при разной ширине щели (в мм)

    О волновой природе электрона. У частиц малой массы движение и взаимодействие происходят по законам, отличающимся от законов классической механики. Как было установлено, электромагнитные колебания имеют двойственную природу. Такие явления, как интерференция и дифракция света, свидетельствуют о его волновой природе, а способность оказывать иа освещаемую поверхность механическое давление или вырывать с этой поверхности электроны (фотоэлектрический эффект) указывает иа его корпускулярную природу, т. е. позволяет рассматривать световое излучение как поток частиц, или квантов, названных фотонами. [c.26]

    Опалесценция в коллоидных растворах объясняется дифракцией света. Суть ее состоит в том, что лучи света, огибая коллоидные частицы, изменяют свое направление — рассеиваются. Причем, чем меньше длина волны луча света, тем больше угол его отклонения. Поэтому при появлении солнечных лучей после дождя наблюдается радуга. [c.276]

    Частицы меньше длины световой волны также рассеивают свет, но причина явления другая. Здесь отсутствуют отражение и преломление в обычном смысле слова, но происходит дифракция света, встречающего на своем пути частицы коллоидного размера. Получающееся в этом случае явление рассеяния света называется эффектом Тиндаля. [c.125]

    Частицы дисперсной фазы суспензии хорошо видны в обыкновенный микроскоп. Поэтому лишь в сильно разбавленных взвесях можно наблюдать светорассеяние подобное эффекту Тиндаля, а в концентрированных суспензиях и, тем более, в пастах наблюдать это явление невозможно. По той же причине дифракция света в суспензиях не наблюдается во всех случаях. [c.293]

    Из курса физики известно, что свет обладает двойственной природой волновой и корпускулярной. Такие явления, как дифракция света, интерференция, свидетельствуют о его волновой природе. Явление фотоэффекта (отрыв от поверхности вещества электронов под воздействием света) дает представление о его корпускулярной природе. [c.173]

Рис. 7. Дифракция света (схема опыта) Рис. 7. Дифракция света (схема опыта)
    Впервые аналогичная двойственная природа, которую мы выше отметили для электронов, была установлена для света. В первой половине прошлого века в результате изучения интерференции и дифракции света было экспериментально установлено, что свет представляет собой электромагнитные колебания, т. е. обладает волновыми свойствами.  [c.41]

    Таким образом, вследствие дифракции свет за щелью распространяется не только в направлении /<, но и в другом направлении. Интенсивность его мала для углов 0, близких к 6д. [c.19]

    В спектральных аппаратах наряду с использованием геометрической оптики придется учитывать дифракцию света в тех случаях, когда существенны даже незначительные отклонения от прямолинейного распространения, а также при прохождении света через узкие отверстия. [c.20]

    Поэтому вследствие дифракции свет после прохождения каждой щели может распространяться под любым углом к прежнему направлению. Угловая ширина (20 ) главного дифракционного максимума за каждой ш елью составляет почти 180°. Падающий на решетку параллельный пучок света после дифракции заполняет все пространство за каждой щелью. [c.89]

    Объясните, почему при дифракции света на одной щели условием появления максимума является нечетное число полуволн, а в дифракционной решетке максимумы света получаются в направлениях, где разность хода от соответствующих точек соседних щелей составляет целое число волн (четное число полуволн). [c.93]

    На первый взгляд кажется, что уменьшением ширины щели можно добиться сколь угодно малой ширины линий и разрешить любую пару близких спектральных линий. В действительности уменьшение ширины щели приводит к сужению линии только до определенного предела, так как происходит увеличение ширины линии вследствие дифракции света в приборе. Кроме того, как мы уже знаем, ширина линий увеличивается также до спектрального аппарата — в источниках света. [c.103]

    В соответствии с законами электродинамики, осциллирующие молекулярные диполи являются источниками вторичных волн с той же-частотой (О, В однородной среде с поляризуемостью ао интерференция вторичных волн, по принципу Гюйгенса—Френеля, приводит к распространению света только в направлении первичной (падающей) световой волны. В неоднородной среде, содержащей частицы или иные неоднородности (макромолекулы, флуктуационные образования) с поляризуемостью а, отличной от поляризуемости среды ао, не происходит полного гашения световых волн, распространяющихся в направлениях, отличных от направления распространения первичной волны, т. е. обнаруживается дифракция света на неоднородностях среды. В этом и заключается сущность рассеяния света малыми частицами (опалесценции), приводящего, в частности, к возникновению эффекта Тиндаля (правильнее Фарадея—Тиндаля) луч света в дисперсной системе становится видимым. [c.159]


    Для определения молекулярной массы полимеров могут быть использованы различные физические и х мнческие методы. Среди физических наибольшее значение имеют методы, основанные на измерениях осмотического давления, вязкости, дифракции света, а также метод ультрацентрифугировання. Наиболее интересный химический способ определения молекулярной массы — это метод концевых групп. [c.306]

    Выбор между механизмами частицы и волны физик XIX в. делал прежде всего на основе наличия или отсутствия явлений дифракции и интерференции. Эти явления свидетельствовали о периодическом характере процесса. Представим себе, например, явление дифракции света. Свет, пройдя через одну щель, дает на находящемся на ней экране систему периодически повторяющихся по определенному закону полос. Очевидно, что периодичность вызвана здесь не периодичностью прибора, а природой самого процесса распространения света. [c.544]

    Опалесценция. Жидкокристаллические растворы являются мутными, хотя они и не содержат нерастворенного вещества. Эта мутность обусловлена дифракцией света, проходящего через жидкокристаллические домены, имеющие различные размеры и направления. При перемешивании (даже слабом) такой системы легко можно заметить опалесценцию (или жемчужный блеск), которая быстро пропадает при прекращении перемешивания. [c.65]

    Дифракция света на благородном опале приводила к появлению дифракционных картин, которые интерпретировались по аналогии с теорией дифракции рентгеновских лучей. Сандерс [356] обнаружил, что сферические частицы кремнезема были упакованы в слоях гексагонально, а слои обычно располагались произвольным образом. Имеются некоторые параллельные области упорядоченных, обычно гранецентрированных, кубических упаковок. [c.548]

    К принципиальным недостаткам контактного метода относятся образование дефектов изображения из-за контактных нагрузок на фоторезистную пленку и несовмещаемость изображений различных слоев, также связанная с контактными деформациями искривленных поверхностей. Оптимизация условий контактного экспонирования и приводит к тому, что предельные возможности метода не реализуются на практике. Попытки снизить контактное усилие с целью устранения дефектообразований в резисте приводит к падению разрешающей способности метода и неконтролируемому уходу размеров элементов из-за образования зазоров, а также расходимости экспонирующего пучка лучей и дифракции. Расходимость (апертура) пучка лучей даже при наличии конденсорных коллимирующих систем в современных установках экспонирования составляет 3—7°, что и при небольших зазорах приводит к образованию полутени в изображении, отклонениям линейных размеров элементов и ухудшению качества края элементов. Дифракция света на краях элементов при наличии микрозазоров переменной величины по площади объекта приводит к образованию интерференционной структуры в изображении и ряду других нежелательных эффектов, например так называемому двойному краю — оконтуриванию изображения элементов вследствие осцилляции освещенности у края элементов, что связано с контрастностью и пороговыми свойствами светочувствительного материала. Могут искажаться углы элементов и даже их форма, особенно существенными эти искажения могут быть при использовании когерентного света. [c.27]

    Оптические свойства являются результатом взаимодействия видимой части спектра лучистой энергии с минералом. Эффект взаимодействия наблюдается в том случае, если на границе среды и минерала имеется неоднородность, превышающая половину длины световой волны, отмечается дифференциальное поглощение телом видимой части спектра и существует различие в оптической плотности минерала и вмещающей среды. При этих условиях возникают дифракция света, его преломление, отражение, поглощение и рассеяние. Воспринимаемые глазом световые ощущения от предметов — результат суммы этих явлений. [c.71]

    Двойственная природа света. Впервые двойственная корпускулярно-волновая природа была установлена для света. В первой половине прощлого века в результате изучения интерференции и дифракции света было экспериментально обосновано, что свет представляет собой поперечные электромагнитные колебания, Возникновение в определенных условиях явлений и интерференции и дифракции является неотъемлемой особенностью любого волнового процесса. [c.16]

    Согласно волновой теории света, явления преломления и дифракции света можно понять, зная законы распространения волн. Для объяснения других свойств света, таких как линейчатый вид атомных спектров и фотоэлектрический эффект, необходимо обратиться к корпускулярной (фотонной) теории света. Такая двойственная природа света побудила в 1924 г. де Бройля задуматься над вопросом не мо-Свег (1аспро1 пп я( тся гут ли и частицы обладать некоторыми волновыми как волна, но он имеет свойствами Он высказал предположение, что длина также ряд сеи йстп, волны X для частицы с массой т, движущейся со характерчь X дчя часки скоростью и, определяется уравнением  [c.42]

    Лекция 38. Дифракция света. Принцип Гюйгенса-Френеля расчет [c.166]

    Луч света от источника 1 (рис. 40) проходит через коллиматор, состоящий из узкой щели 2 и объектива 3, а затем в виде узкого параллельного пучка проходит через диафрагму с двумя отверстиями 4, через камеры кюветы 5 и б, пластинки компенсатора 7 5 и объектив 9. Вследствие дифракции света на отверстиях диафрагмы 4 в фокальной плоскости Объектива 9 создается система интерференционны полос, которая на1блю1дается с помощью окуляра 10. [c.127]

    Идеи де Бройля были подтверяодены многочисленными экспериментами, в частности опытами Дэвиссона и Джермера в 1927 г., обнаружившими дифракцию электронов, подобную дифракции света. Это открытие подтвердило наличие волновых свойств у электронов. [c.25]

    Неорганические золи можно получить диспергированием твердого вещества (которое обычным путем растворить нельзя), например золота, окиси железа и сульфида мышьяка, в воде. Золи золота, получаемые добавлением восстановителя к разбавленному раствору хлорида золота, были известны еще алхимикам XVII в. и изучались Майклом Фарадеем. Очень часто эти золи окрашены в самые яркие цвета — рубиново-красный, синий, зеленый и др. их окраска объясняется дифракцией света частицами золота в золе, которые имеют размеры, близкие к длине волны света. Золи стабилизируются, если на поверхности частиц находится электрический заряд (отрицательный заряд в случае золей золота). Фарадей установил, что при добавлении небольшого количества соли рубиново-красные золи золота становятся синими. Это происходит в результате образования более крупных частиц из мелких, а такие укрупненные частицы рассеивают свет с большей длиной волны. Дальнейшее добавление соли вызывает коагуляцию частиц. Коагуляция происходит в результате действия небольших ионов, несущих противоположный заряд (Na-b, Mg +, Al ), притягивающихся отрицательны- [c.269]

    Фотон, или квант света, в настоящее время считают одной из фундаментальных частиц. Ньютон рассматривал как корпускулярную, так и волновую теорию света. На протяжении XIX в. предпочтение неизменно отдавалось волновой теории света в связи с успешными акоперимен-тами по дифракции света. В 1905 г. Эйнштейн обратил внимание на то, что значительную часть не поддававшихся ранее объяснению опытных данных можно довольно просто интерпретировать в предположении, что свет (видимый свет, ультрафиолетовое излучение, радиоволны, гамма-лучи и т. д.) обладает некоторыми свойствами частиц (разд. 3.10). Он назвал эти частицы света световыми квантами , и с того же времени вошло в употребление название фотон . Количество энергии, составляющее световой квант, определяется частотой данного излучения энергия кванта Е = ку. [c.586]

    В основе У. лежит дифракция света на колловдных частицах, размер к-рых меньше половины длины световой волны, в результате чего система начинает светиться. Частицы можно наблюдать в УМ как яркие дифракц. пятна, изучать их природу, оценивать концентрацию, однако изображений частиц микроскоп не создает. Яркость свечения, а следовательно, и видимость частиц зависят от разности показателей преломления частицы и дисперсионной среды. Если она велика (напр., взвесь металлич. частиц в воде), то отчетливо фиксируются частицы размерами 2-4 нм (т.е. значительно меньше предела разрешения обычных микроскопов). Если эта разность мала (взвесь орг. частиц в воде), то обнаруживаются только частицы размерами не менее 20-40 нм. В лиофильных коллоидах (напр., гелях желатины, декстрина) пов-сть частиц вследствие сольватации не обладает заметной разницей в показателях преломления относительно дисперсионной среды (воды), поэтому свечение в них знач1ггельно слабее. [c.36]

    Рнс. I. 8. Распределение интеисивностн света /, обусловленное дифракцией света от маски с прозрачными и нелрозрачными областями (решетки)  [c.29]

    Непосредственное измерение фракционного состава порошка осуществляется при помощи разного рода микроскопов — обычных оптических, электронных, сканирующих, наприм1ер французской фирмы М11Ироге . Использование этих методов осложняется трудностыа изготовления микрошлифа, в плоскости которого частицы не должны перекрывать друг друга, однако применение телевизионной установки вместе с компьютером обеспечивает возможность их использования в будущем. Следует отметить появление оборудования, в котором используется принцип дифракции света, как, например, лазерный гранулометр. Микроскопия позволяет измерять частицы размером от 0,001 до 500 мкм. [c.34]

    В животном царстве есть много примеров, когда наблюдаемая окраска является результатом таких оптических феноменов, как рассеяние, интерференция или дифракция света содержащимися в тканях микроскопическими структурами. Такую окраску называют структурной. Структурная окраска — весьма обширная и важная тема исследований, но подробное описание разных видов структурной окраски и оптических явлений, которые их вызывают, выходит за рамкп этой книги. Поэтому ниже мы охарактеризуем эти явления лишь вкратце. [c.13]


Смотреть страницы где упоминается термин Дифракция света: [c.85]    [c.91]    [c.197]    [c.60]    [c.85]    [c.91]    [c.153]    [c.425]    [c.193]    [c.207]    [c.402]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.153 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.153 ]

Возможности химии сегодня и завтра (1992) -- [ c.230 ]

Физические и химические основы цветной фотографии Издание 2 (1990) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Дифракция

Дифракция и интерференция света

Дифракция света в ультразвуковом поле

Дифракция света двумерной моделью жидкости

Свет монохроматический, дифракци

Свет монохроматический, дифракция

Световой луч, дифракция

Световой луч, дифракция



© 2025 chem21.info Реклама на сайте