Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Леннарда—Джонса трех тел

    До сих пор рассматривалось такое положение, когда изолированный атом в возбужденном состоянии имеет два, три или четыре неспаренных электрона. К сожалению, нельзя проверить наши предсказания радиального или углового распределения электронов для изолированных атомов, но можно изучить молекулы, образованные этими атомами. Предполагают, что в ковалентных молекулах, в которых неспаренные электроны одного атома становятся спаренными с электронами окружащих атомов, электроны с параллельными спинами находятся как можно дальше друг от друга в соответствии с принципом Паули и принципом неразличимости. В качестве примера рассмотрим атом неона, у которого есть четыре пары электронов во внешней оболочке. Леннард-Джонс на основе принципа Паули предсказал, что наиболее вероятной конфигурацией каждой четверки электронов с параллельными спинами является тетраэдр. Далее, если пренебречь кулоновским отталкиванием, то не будет корреляции между двумя конфигурациями электронов с противоположными спинами, и их можно будет равновероятно найти в любой ориентации друг относительно друга. Однако следует напомнить, что у электронов с противоположно направленными спинами существует определенная тенденция к стягиванию, которому препятствует кулоновское отталкивание корреляция зарядов). Метода проверки такого взгляда на атом неона нет. Однако интересно отметить, что Ме, Аг, Кг и Хе имеют в твердом состоянии структуру с плотной кубической упаковкой, подобной тетраэдрическому метану, а не плотную гексагональную упаковку, найденную для гелия, хотя ранее для всех инертных газов последняя структура ожидалась в предположении, что их атомы должны быть сферическими . Теперь рассмотрим метан, в котором углерод может быть гипотетически представлен как с электронной конфигурацией неона. Когда четыре протона присоединяются к С , образуя СН4, притяжение протонов к электронам приводит к совмещению двух независимых четверок электронов, расположенных в вершинах тетраэдров. Так как молекула метана действительно тетраэдрическая, то это предсказание оправдывается, хотя механизм образования молекулы метана проверить нельзя. Суммируя все сказанное, можно считать, что наиболее вероятное расположение п электронов с одинаковыми спинами будет также и наиболее вероятным расположением п пар электронов. [c.205]


    Для (Приближенного решения рассматриваемой задачи пригодны потенциалы Леннарда — Джонса, Борна, Букингема, а также более точное уравнение Шрединге-ра. Межмолекулярные силы проявляются, когда расстояние между молекулами не превышает 5 А. Они значительно слабее валентных. Известны следующие три основных типа межмолекулярных сил дипольные, индукционные и дисперсионные. Промежуточное положение между химическими и межмолекулярными связями занимает водородная связь. [c.9]

    Уместно вспомнить об одном обстоятельстве из истории развития теории химической связи и межмолекулярного взаимодействия. После первых расчетов энергии связи в молекулах с разными атомами (металл — металлоид) стало ясно, что эта величина мало чувствительна к принятой модели. Расчеты гетерополярных молекул с учетом или без учета поляризации, по модели твердых шаров или по любой модели, учитывающей отталкивание, почти всегда приводили к близким к эксперименту значениям энергии связи. Попытки вычислить энергию, например, водородной связи, основанные на разных моделях как электростатических, так и ковалентных, почти всегда давали вполне удовлетворительный результат. То же относится и к расчетам теплот адсорбции. Правильный порядок величины обеспечивается тем, что из эксперимента берутся две или три константы, а правильный характер всей потенциальной кривой постулирован заранее. Сама по себе полуэмпирическая потенциальная кривая, будь то кривая Леннард-Джонса или кривая, в которой коэффициент при берется по Лондону или каким-либо иным теоретическим способом, ничего не может сказать о природе сил адсорбции, так же как и кривая Морзе для двухатомной молекулы ничего не говорит о природе связи атомов в ней. [c.83]

    Очевидно, что все три способа дают прекрасное согласие между собой. В статье с Леннард-Джонсом [17] Коулсон сообщает уже [c.329]

    До сих пор рассматривалось такое положение, когда изолированный атом в возбужденном состоянии имеет два, три или четыре неспаренных электрона. К сожалению, нельзя проверить наши предсказания радиального или углового распределения электронов для изолированных атомов, но можно изучить молекулы, образованные этими атомами. Предполагают, что в ковалентных молекулах, в которых неспаренные электроны одного атома становятся спаренными с электронами окружающих атомов, электроны с параллельными спинами находятся как можно дальше друг от друга в соответствии с принципом Паули и принципом неразличимости. В качестве примера рассмотрим атом неона, у которого есть четыре пары электронов во внешней оболочке. Леннард-Джонс на основе принципа Паули предсказал, что наиболее вероятной конфигурацией каждой четверки электронов с параллельными спинами является тетраэдр. Далее, если пренебречь кулоновским отталкиванием, то не будет корреляции между двумя конфигурациями электронов с противоположными спинами, и их можно будет равновероятно найти в любой ориентации друг относительно друга. Однако следует напомнить, что у электронов с противоположно направленными спинами существует определенная тенденция к стягиванию, которому препятствует кулоновское отталкивание корреляция зарядов). Метода проверки такого взгляда на атом неона нет. Однако интересно отметить, что Ые, Аг, Кг и Хе имеют в твердом состоянии структуру с плотной кубической упаковкой, подобной тетраэдрическому метану, а не плотную гексагональную упаковку, найденную для гелия, хотя ранее для всех инертных газов последняя структура ожидалась в предположении, что их атомы должны быть сферическими . [c.197]


    В уравнении (3.99) содержится три эмпирических параметра X, е и Нд. Постоянная х характеризует крутизну наклона отталкивательной части потенциала межмолекулярных сил. Формула (3.99) лучше, чем уравнение (3.87), согласуется с теоретической формой сил отталкивания (см. 2). Несмотря на то, что присутствие третьего параметра и придает эксн.-шесть -потен-циалу большую гибкость, расчеты, произведенные с его помощью, обычно не дают каких-либо преимуществ по сравнению с более простым (12—6)-потенциалом [47]. Только для самых легких молекул водорода и гелия эксп.-шесть -потенциал несколько лучше, чем потенциал Леннард-Джонса, воспроизводит зависимость вязкости, второго вириального коэффициента и других свойств от температуры ). [c.102]

    Леннард-Джонс, Бэрдин и Маргенау и Поллард получили дисперсионные потенциалы, убывающие с третьей степенью расстояния между молекуламй и поверхностью. Прозеном, Захсом и Теллером [ ] было отмечено, что эти три трактовки справедливы только для больших величин г и что для малых расстояний потенциал обратно пропорционален // , если принять наличие свободного электронного газа в металле, и 1//-2, если принять вырожденный электронный газ [c.289]

Рис. v.l. Три последцовательные коифшуращш цепи (проекции на плоскость ху [127]. Сплошными линиями показаны проекции. действительных координат звеньев цепи, штриховыми - их периодических продолжений. Точками обозначены центры частиц, взаимодействующих между собой с потенциалом Леннарда - Джонса (V.2). Для одной из частиц показан диаметр d = 1,12а, соответствующий минимуму потенциала Леншфда -Джонса. Рис. v.l. Три последцовательные коифшуращш цепи (проекции на плоскость ху [127]. Сплошными линиями показаны проекции. <a href="/info/1816368">действительных координат</a> <a href="/info/3294">звеньев цепи</a>, штриховыми - их <a href="/info/1653419">периодических продолжений</a>. Точками обозначены <a href="/info/831876">центры частиц</a>, <a href="/info/295042">взаимодействующих между</a> <a href="/info/1795776">собой</a> с потенциалом Леннарда - Джонса (V.2). Для одной из частиц показан диаметр d = 1,12а, соответствующий <a href="/info/878511">минимуму потенциала</a> Леншфда -Джонса.
    Существуют три способа приближенного описания строения жидкостей. Один из них опирается на представление об ассоциатах и комплексах, другой связан с понятием о функциях распределения частиц третий использует понятие о флуктуациях [1]. Здесь будет использовано представление об ассоциатах и комплексах, а также понятие о флуктуациях. Функции распределения частиц рассматриваться не будут по следующим причинам. Поскольку строение жидкостей определяется короткодействующими химическими силами, то и корреляция, т. е. взаимосвязь положений молекул, также должна зависеть, в основном, от короткодействующих сил химического типа. Эти силы определяют вероятные положения молекул первой координационной сферы. От этих сил зависят вероятные положения молекул второй координационной сферы по отношению к молекулам первой сферы и т. д. Таким образом, корреляция есть статистическое описание ассоциации и ком-плексообразоваиия. Функции распределения положений частиц, описывающие корреляцию молекул или атомов, имеют статистическую природу. Связь между функциями распределения и межмолекулярными взаимодействиями, а также строением ассоциатов и комплексов сложна и неоднозначна. Известен ряд приближенных аналитических выражений этой связи, которые, как правило, основаны на предположении, что молекулы представляют собой шарики. Потенциал взаимодействия молекул обычно подбирается с помощью эмпирических соотношений, например, уравнения Леннард-Джонса. Этот подход получил наибольшее распространение при описании строения одноатомных жидкостей, таких, как жидкий аргон. Здесь надо иметь в виду следующее. Приближения, которые приводят к имеющимся в литературе аналитическим выражениям функций распределения атомов, в действительности имеют смысл, лишь когда речь идет не [c.13]


Смотреть страницы где упоминается термин Леннарда—Джонса трех тел: [c.19]    [c.70]    [c.173]    [c.150]    [c.281]   
Свойства газов и жидкостей (1966) -- [ c.331 ]




ПОИСК





Смотрите так же термины и статьи:

Джонс

Леннарда Джонса

Триал



© 2024 chem21.info Реклама на сайте