Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неон, электронная конфигурация

    Электронная конфигурация атома неона совпадает с электронными конфигурациями ионов нескольких элементов. Приведите 4 таких иона. Ответ мотивируйте. [c.40]

    Неон принадлежит ко второму периоду п = 2). Электронная конфигурация атома в невозбужденном (нормальном) состоянии следующая  [c.539]

    Электронные конфигурации для нормальных состояний атомов элементов от лития до неона приведены в табл. 5.4. [c.117]


    Напишите электронную конфигурацию атомов неона, фтора, магния в их первом возбужденном состоянии. [c.39]

    В атоме неона, порядковый номер 10, завершается заполнение 2р-подуровня и второго уровня в целом, поскольку на втором уровне только два подуровня - s и р. На втором уровне 2+6=8 электронов. Это максимальное возможное количество (2х2 =8). Электронная конфигурация ls 2s 2p . Суммарный спин - 0. [c.42]

    У последнего элемента 3-го периода — аргона Аг (как и у Ые) завершается заполнение х- и р-орбиталей. Его внешний слой (слой М) представляет собой совокупность четырех двухэлектронных облаков (одного в форме шара, трех других — в форме гантели). У атомов элементов 3-го периода в двух первых квантовых слоях (К и ) повторяется электронная конфигурация атома неона (I я 2я 2р"). На рисунке II по максимумам распределения электронной плотности в атоме аргона можно различить К-, L- и Л1-слои. [c.28]

    Рассмотрим механизм образования ионной связи. При взаимодействии атомов натрия (1б 2з=2р 3з ) с атомами хлора (1з 2з 2р 38 3р ) происходит переход электрона с Зз-орбитали атома натрия на Зр-ор-биталь атома хлора. При этом атом натрия превращается в положительно заряженную частицу — ион со стабильной конфигурацией ближайшего благородного газа — неона (1з 2з 2р ). Атом же хлора принимает этот электрон на Зр-орбиталь, превращаясь в отрицательно заряженный ион с электронной конфигурацией 1з 2в 2р 3з 3р , характерной для аргона. Образовавшиеся в результате перехода электронов противоположно заряженные ионы натрия и хлора прочно удерживаются силами электростатического притяжения. [c.34]

    Электронная конфигурация иона — 18228 2р . Такую же электронную конфигурацию имеет атом неона и ионы Г , Ка+, М 2+, А13+. [c.466]

    Справа выписано число неспаренных внешних электронов и формулы соответствующих водородных соединений. Валентность, согласно изложенному, должна равняться этому числу неспаренных электронов. Мы видим, что в полном соответствии с опытными данными водород, литий, фтор и натрий — одновалентны, кислород — двухвалентен, азот — трехвалентен. Атомы инертных газов гелия и неона не образуют молекул, так как все их электроны спарены, поэтому их валентность равна нулю. Противоречие мы наблюдаем лишь для атомов Ве, В, С, для которых возможны и другие валентности (указанные в скобках). Но это противоречие только кажущееся и объясняется тем, что мы привыкли считать, что свободные атомы, образуя химическую связь, обязательно сохраняют строение своих электронных оболочек. Но не существует никаких причин, по которым это должно быть только так атом, образуя связь, уже не является свободным, и его электронная конфигурация может и должна — в большей или меньшей степени) измениться. Поэтому необходимо принимать во снимание те изменения энергии, которые могут возникнуть при образовании химической связи. [c.71]


    Для вовлечения инертного элемента в химическую реакцию необходимо предварительно возбудить его атомы с тем, чтобы вызвать распаривания ( развод ) одного из электронных дублетов. В диапазоне энергий обычных химических процессов это осуществимо лишь в отношении тех инертных элементов, атомы которых содержат вакантные ячейки в -подуровне внешнего квантового уровня, -ч С этой точки зрения сопоставим электронные конфигурации атомов неона и ксенона. [c.539]

    Третий период начинается с натрия, в атоме которого заполняется М-энергетический уровень, или М-слой. Электронная конфигурация натрия ls 2s 2p 3s или [Ne]3s показывает, что остовом атома натрия служит электронная структура неона. У следующих за натрием элементов происходит заполнение s- и р-орбиталей при п = 2>. Однако при главном квантовом числе, равном трем, не используются все возможности заполнения вакантных орбиталей. При п = 2> пять Sd-орбиталей (1=2), на каждой из которых может разместиться по два электрона, остаются свободными (10 вакансий). Несмотря на это, у элементов четвертого периода, у калия и кальция, начинает заполняться четвертый энергетический уровень, или N-слой (п = 4). [c.23]

    Вы, вероятно, знаете, что лишь немногие химические элементы гелий, неон, аргон, криптон и ксенон — при обычных условиях находятся в состоянии одноатомного пара. Свободные атомы большинства элементов стремятся образовать более сложные системы — молекулы или немолекулярные кристаллы. Следовательно, у этих элементов электронная структура свободных атомов обладает лишь относительной устойчивостью (например, в состоянии крайне разреженного пара), тогда как при сближении атомов образуются системы с более стабильной электронной конфигурацией. Это явление носит название образования химической связи. [c.168]

    До сих пор рассматривалось такое положение, когда изолированный атом в возбужденном состоянии имеет два, три или четыре неспаренных электрона. К сожалению, нельзя проверить наши предсказания радиального или углового распределения электронов для изолированных атомов, но можно изучить молекулы, образованные этими атомами. Предполагают, что в ковалентных молекулах, в которых неспаренные электроны одного атома становятся спаренными с электронами окружащих атомов, электроны с параллельными спинами находятся как можно дальше друг от друга в соответствии с принципом Паули и принципом неразличимости. В качестве примера рассмотрим атом неона, у которого есть четыре пары электронов во внешней оболочке. Леннард-Джонс на основе принципа Паули предсказал, что наиболее вероятной конфигурацией каждой четверки электронов с параллельными спинами является тетраэдр. Далее, если пренебречь кулоновским отталкиванием, то не будет корреляции между двумя конфигурациями электронов с противоположными спинами, и их можно будет равновероятно найти в любой ориентации друг относительно друга. Однако следует напомнить, что у электронов с противоположно направленными спинами существует определенная тенденция к стягиванию, которому препятствует кулоновское отталкивание корреляция зарядов). Метода проверки такого взгляда на атом неона нет. Однако интересно отметить, что Ме, Аг, Кг и Хе имеют в твердом состоянии структуру с плотной кубической упаковкой, подобной тетраэдрическому метану, а не плотную гексагональную упаковку, найденную для гелия, хотя ранее для всех инертных газов последняя структура ожидалась в предположении, что их атомы должны быть сферическими . Теперь рассмотрим метан, в котором углерод может быть гипотетически представлен как с электронной конфигурацией неона. Когда четыре протона присоединяются к С , образуя СН4, притяжение протонов к электронам приводит к совмещению двух независимых четверок электронов, расположенных в вершинах тетраэдров. Так как молекула метана действительно тетраэдрическая, то это предсказание оправдывается, хотя механизм образования молекулы метана проверить нельзя. Суммируя все сказанное, можно считать, что наиболее вероятное расположение п электронов с одинаковыми спинами будет также и наиболее вероятным расположением п пар электронов. [c.205]

    Оболочка гелия состоит только из двух электронов. Остальные же элементы на наружных уровнях содержат по 8 электронов. Конфигурация наружных энергетических уровней неона, аргона, криптона, ксенона и радона выражается формулой [c.249]

    Направляет реакцию, очевидно, стремление нейтрального атома хлора с конфигурацией 2) 8) 7 довести количество электронов в своем наружном электронном уровне до 8, т. е. числа, характерного для законченной электронной оболочки атома соседнего инертного газа — аргона 2) 8) 8. У атома натрия с конфигурацией электронов 2) 8) 1 теряется внешний электрон и создается электронная конфигурация атома инертного газа — неона 2) 8. [c.105]

    Третий период начинается с натрия (2=11), электронная конфигурация которого 1з 2з 2р 3з . С него началось заполнение третьего уровня. Завершается оно у инертного элемента аргона (2=18), Зя-и Зр-подуровни которого полностью заполнены. Электронная формула аргона 1з 25 2р 35 3р . Натрии — аналог лития, аргон — неона. В третьем периоде, так же как и во втором, восемь элементов. [c.51]


    III период начинается с натрия (2 == П), электронная конфигурация которого ls 2s 2 5 3s . С него началось заполнение третьего энергетического уровня. Завершается оно у инертного элемента аргона (2 = 18), Зз- и 3/ -подуровни которого полностью заполнены. Электронная формула аргона 15 25 2р 35 3р Натрий— аналог лития, аргон—неона. В П1 периоде, так же как и во втором, восемь элементов. [c.29]

    Отсутствие неспаренных электронов и очень высокая стабильность основной электронной конфигурации исключают возможность образования. .. с участием неона. [c.36]

    Электронная конфигурация образовавшихся ионов подобна электронной конфигурации инертных газов ион С1" принимает конфигурацию аргона, а ион N3+ — конфигурацию неона. Внешние, или валентные, оболочки заняты теперь восемью электронами, но число электронов не равно числу протонов, как в случае нейтральных атомов А и В. [c.49]

    Атом натрия может приобрести устойчивую электронную конфигурацию неона, отдав один электрон  [c.79]

    Почти во всех полигональных и полиэдрических молекулах каждый атом вершины имеет электронную конфигурацию следующего за ним в ряду периодической системы инертного газа (неона, аргона, криптона, ксенона или радона в зависимости от ряда периодической системы, к которому принадлежит элемент, атом которого находится в вершине). Вследствие этого каждая внешняя орбиталь атома вершины должна быть заполнена электронной парой, электроны которой поступили от атома вершины и/или от внешней группы. Это позволяет определить способы подсчета числа электронов, поставляемых различными группами вершины в полигональный или полиэдрический скелет такие электроны называются скелетными электронами. Например, рассмотрим группы вершины Ре(СО)з, где для 6 внешних орбиталей атома железа необходимо 12 электронов. Из них 2 электрона поступают от каждой из трех карбонильных групп, остальные 6 электронов поставляются атомом железа. Поскольку нейтральный атом железа имеет 8 валентных электронов, для полигонального или полиэдрического скелета остаются, таким образом, 2(= 8-6) электрона. Следовательно, группа Ре(СО)з является донором 2 скелетных электронов. [c.121]

    ТРЕТИЙ короткий период также состоит из 8- и р-элементов. В связи с ростом главного квантового числа уменьшается энергия связи внешних электронов с ядром и увеличивается размер внешних атомных орбиталей. Поэтому электроотрицательность элементов третьего периода меньше, чем элементов второго периода. По сравнению со вторым периодом увеличивается размер электронного остова - он включает уже 10 электронов 1з 28 2р (оболочка неона - [Ne]). Образование р -р -связей практически невозможно из-за увеличения остова, поэтому, в частности, все простые вещества от натрия до серы представляют собой не молекулярные вещества, а металлические или атомные кристаллы. При этом внутри каждой группы элементы второго и третьего периодов близки по свойствам, так как их электронные конфигурации аналогичны, они различаются лишь главным квантовым числом. Элементы первых трех периодов Менделеев назвал типическими -в них выражены, как в образцах и в наиболее ясной форме, все виды и свойства, но и со своими особенностями . [c.238]

    Гелий-неоновый газовый лазер представляет особый интерес в связи с темой данной главы. Неон является веществом, которое способно обнаруживать лазерное действие. Однако инверсная заселенность в нем достигается в результате переноса энергии от возбужденного состояния гелия к неону, который таким образом переводится в возбужденное состояние. Гелий возбуждается электрическим разрядом (столкновениями с электронами в электрической разрядной трубке). Для такого возбуждения неприменимы обычные правила отбора. Многие из возбужденных атомов гелия в конце концов попадают в низшее возбужденное состояние (конфигурации 15 2з ) либо непосредственно в результате возбуждения, либо в результате распада высокоэнергетических возбужденных состояний. Излуча-тельный переход из состояния в синглетное основное состояние запрещен по спину, вследствие чего состояние 51 обладает сравнительно большим временем жизни. Это состояние лежит приблизительно на 1,6-10" см- над основным состоянием гелия. Высшее энергетическое состояние конфигурации ls 2s 2p 4s неона [эту конфигурацию мы сокращенно обозначим символом (Ые+, 45)] лежит всего на 314 см- ниже по энергии, чем указанное возбужденное состояние, относительно основного состояния неона. В такой ситуации возможен резонансный перенос энергии, при котором энергия возбуждения переходит от гелия к неону. Состояния конфигураций (Не+, Зр) и (Не+, Зз) расположены между конфигурацией (Не+, 4з) и основным состоянием. Они не заселяются возбужденным гелием следовательно, создается инверсная заселенность между различными возбужденными состояниями неона. Преобладающее лазерное дей- [c.189]

    Отдавая или принимая электроны, атомы взаимодействующих элементов превращаются в положительные или отрицательные ионы, которые затем притягиваются электростатически, согласно закону Кулона, образуя ионную связь. На-ример, атом лития, образуя ионную связь с атомом фтора, теряет один электрон и приобретает электронную конфигурацию благородного газа — гелия. Одновременно фтор, приобретая электрон, достраивает свою электронную оболочку до электронной конфигурации другого б.лагородного газа — неона. Образовавшиеся катион лития и анион фтора притягиваются друг к другу и образуют ионную связь  [c.143]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]

    В качестве примера образования ионного соединения рассмотрим образование молекулы Na l в газовой фазе. Электронные конфигурации атомов натрия Is 2s 2/) 35 и хлора Is 2s 2/ 3s Зр показывают, что они легко могут быть превращены в оболочки инертных газов неона Is 2s 2р и аргона 2s 2р 3s Зр соответственно, при переходе одного электрона от натрия к хлору. В результате электростатиче- р с. 13. Образование ионов ского взаимодействия Na+ и С1- [c.75]

    Рассматриваемый период начинается двумя элементами з-семей-ства (Ь1 и Ве), их структура (Ь ) 2s . Далее следуют шесть элементов р-семейства со структурой (15 ) 2p . Заканчивается период элементом неоном, атом которого имеет структуру (1з ) 2з 2р. Внешний электронный слой I состоит из восьми электронов. Восемь электронов во внешнем слое образуют прочную электронную конфигурацию — октет (лат. ос1о — восемь). Неон—инертный элемент. [c.45]

    Из этих формул видно, что в молекуле водорода благодаря объединению двух электронов в пару каждый из атомов приобретает конфигурацию благородного газа — гелия. В молекуле НС1 атом водорода имеет конфигурацию гелия, а атом хлора — электронную конфигурацию ближайшего к нему благородного газа — аргона. В молекуле аммиака связь обеспечивается тремя электронными парами, при этом атом азота принимает конфигурацию благородного газа неона, а водород — гелия. Связь такого типа называется геомеополярной, или ковалентной. Отметим, что электронные пары, обеспечи- [c.153]

    С развитием представлений об электронном строении атома стало ясным, что особая химическая инертность гелия, неона, аргона и их аналогов обусловлена повышенной устойчивостью полностью укомплектованных 5- и /3-оболочек. С учетом этого и были разработаны представления о ионной (Коссель, 1916) и ковалентной (Льюис, 1916) связи. Особая устойчивость электронного октета и стремление других атомов тем или иным способом приобрести электронную конфигурацию благородного газа на долгие годы стали краеугольным камнем теорий химической связи и кристаллохимического строения (правило Юм-Розери 8—Л, критерий Музера и Пирсона и др.). Нулевая группа стала своеобразной осью периодической системы, отражающей так называемое полновалентное правило (стабильность октетной конфигурации), подобно тому как УА-группа является осью, отражающей четырехэлектронное правило. [c.397]

    Орбиталь с минимальной энергией — это 15-орбиталь. Ее занимает единственный электрон атома водорода. Поэтому электронная конфигурация или электронная формула атома водорода записывается 15 Поскольку на одной 5-орбитали могут находиться два электрона, то электронная формула гелия 15 . Согласно табл. 1 электронная формула лития 15 251, бериллия ls22s неона 5-25 2р . [c.42]

    Итак, I период содержит два элемента водород Z= ) и гелий (Z=2). II период начинается элементом литием (2=3) и завершается неоном (2=10). Во втором периоде восемь элементов. III период начинается с натрия (2=11), электронная конфигурация которого 15"2з 2р 354 С него началось заполнение третьего энергетического уровня. Завершается оно у инертного газа аргона (2=18), 35- и Зр-подуров-ни которого полностью заполнены. Электронная формула аргона ]5 2522р 35 3р . Натрий — аналог лития, аргон — неона. В III периоде, как и во И, восемь элементов. [c.51]

    Рассмотрение электронных конфигураций атомов показало, что конфигурация пз пр соответствует неону, аргону, криптону и ксенону. Эти газы, а также гелий (конфигурация 15 ) называют благородными. В течение многих лет после их открытия считали, что благородные газы не способны принимать участие в химических реакциях они химически инертны (гл. 16). Химическую устойчивость благородных газов связывали с заполненной внешней оболочкой из 8 элек-V,, lii , тронов (или с заполненной /(-оболочкой из двух 1( Мг электронов в случае гелия). В 1916 г. Коссель и Льюис независимо друг от друга выдвинули теории, - i i I химической связи. Оба объясняли образование хими-iii11, I ческой СВЯЗИ стремленибм атомов отдать, получить 1ы, ч )Г , , . I или разделить с другими атомами электроны, чтобы II -и. приобрести устойчивую электронную конфигурацию [c.79]

    В этой формуле символом С обозначен остов атома углерода, т. е. ядро и два электрона на первом главном квантовом уровне. Отдельно изображены восемь электронов на внешпей оболочке вокруг углерода (т. е. па втором главном квантовом уровне). Поэтому углерод оказывается вполне стабильным, если он принимает ту же электронную конфигурацию, что и неон. [c.38]

    Из спектральных данных известно что третий электрон в атоме лития является 8-электроном, следовательно, вторая электронная оболочка, соответствующая второму периоду в периодической таблице элементов, начинается с электронной конфигурации 1з 28. Остальные элементы в этом периоде построены так, как это показано в табл. 14, т. е. путем добавления э.тгектронов на L-oбo-лочку, причем сначала происходит заполнение подоболочки двумя -электронами и затем подоболочки шестью р-электронамп. Следовательно, неон имеет электронную структуру 1з 2з 2р . Теперь построение электронных оболочек остальных атомов можно проводить аналогично, пока мы не дойдем до калпя [c.228]

    Рассмотрим электронные конфигурации атомов первых 11 элементов периодической системы (табл. 3.1). Справа выписаны число неспаренных внешних электронов и формулы соответствующих водородных соединений. Валентность, согласно изложенному, должна равняться числу неспаренных электронов. Мы видим, что водород, литий, фтор и натрий одновалентны, кислород — двухвалентен, азот — трехвалентен. Атомы блшюродных газов гелия и неона не образуют молекул, так как все их электроны спарены, и поэтому валентность равна нулю. Противоречие мы наблюдаем лишь для атомов Ве, В, С, для которых возможны и другие валентности (указанные в скобках). Но это противоречие — только кажущееся, оно объясняется тем, что некоторые атомы при образовании химической связи изменяют свою электронную конфигурацию. [c.43]

    Галогены воспроизводят электронные оболочки благородных газов путем привлечения одного электрона от какого-либо другого атома с образованием соответствующего иона. Например, фтор в соединениях воспроизводит электронную конфигурацию неона (152252р ) при этом атом, вступающий в реакцию с галогеном, превращается в катион. Система из семи периферических электронов атомов галогенов з р ру р/) обеспечивает возможность образования электронного октета. В этом случае два атома, взаимно обменивающиеся электронами, образуют систему, воспроизводящую простую ковалентную связь. Примерами такой связи могут служить молекулы самих двухатомных галогенов межгалоидных соединений, в том числе галоидофторидов и галоидоводородов. [c.14]


Смотреть страницы где упоминается термин Неон, электронная конфигурация: [c.139]    [c.152]    [c.227]    [c.6]    [c.11]    [c.389]    [c.79]    [c.228]    [c.483]    [c.488]    [c.32]   
Неорганическая химия (1987) -- [ c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Неон

Электрон конфигурации

Электронная конфигурация



© 2025 chem21.info Реклама на сайте