Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные типы межмолекулярных взаимодействий в веществах

Таблица 11.7. Основные типы межмолекулярных сил, характеризующих взаимодействие между веществом и неподвижной фазой Таблица 11.7. Основные типы межмолекулярных сил, характеризующих <a href="/info/426232">взаимодействие между веществом</a> и неподвижной фазой

    Для простоты растворители можно в общем виде подразделить на растворители с сильными и со слабыми межмолекулярными взаимодействиями. К первому типу относится важнейший из растворителей — вода, и межмолекулярные силы, действующие в ней, включают всепроникающие силы Ван-дер-Ваальса, диполярное притяжение, зависящее от постоянной поляризации связи О — Н, и, самое важное, водородные связи, связывающие отдельные молекулы в агрегаты. Ко второму типу относится, например, бензол или гексан. В данном случае силами сцепления являются в основном силы Ван-дер-Ваальса. Если вещество нужно растворить в воде, то энергия, выделяющаяся при растворении, должна быть достаточной для того, чтобы преодолеть сильные силы сцепления между молекулами воды, а также силы сцепления между молекулами растворенного вещества. С другой стороны, относительно слабые межмолекулярные силы в бензоле или гексане легко могут быть преодолены, какой бы ни была энергия, необходимая для разделения самих частиц растворенного вещества. [c.127]

    Самые слабые силы взаимодействия между частицами существуют в молекулярных кристаллах, к числу которых относятся, например, кристаллы диоксида углерода, серы, бензола, иода и азота. Эти вещества состоят из молекул, слабо взаимодействующих друг с другом. Взаимодействие между их молекулами относится к такому же типу, который описывается поправочным членом в уравнении Ваи-дер-Ваальса. В кристаллических веществах рассматриваемого типа расположение молекул определяется в основном их формой, дипольным моментом и поляризуемостью. Поскольку силы межмолекулярного взаимодействия невелики, для молекулярных кристаллов характерны низкие температуры плавления или сублимации, мягкость или хрупкость, а также необычайно высокое давление паров над их поверхностью. Наличие запаха у таких твердых веществ, как камфора, нафталин или иод, свидетельствует о том, что их молекулы легко испаряются с поверхности твердого вещества. Электропроводность молекулярных кристаллов очень мала, потому что в их молекулах существует ковалентная связь, и способность электронов перемещаться между молекулами оказывается чрезвычайно низкой. [c.176]

    Взаимодействие растворителя с растворенным веществом определяется комплексом четырех основных типов межмолекулярных взаимодействий дисперсионного, индукционного, донорно-акцепторного (включая образование водородной связи) и диэлектрического (сольватация ионов). Суммарный эффект всех типов взаимодействий определяет полярность растворителя, а преимущественное проявление какого-либо из них — его селективность. [c.129]


    Изучение растворимости выявило следующие основные закономерности. Взаимное растворение веществ протекает тем легче, чем ближе их химическое строение и характер межчастичных взаимодействий а) соединения с ионными связями хорошо растворимы в полярных растворителях соли хорошо растворимы в расплавленных солях и воде, но не растворимы в неполярных растворителях (типа бензола) б) вещества с полярными или легко поляризующимися молекулами тем легче взаимно растворимы, чем ближе характер их межмолекулярных взаимодействий (ацетон растворим в эфире и спирте, аммиак в воде) так же как с неполярными и трудно поляризуемыми молекулами, хорошо растворимы друг в друге (жидкий азот в жидком кислороде) в) вещества с различным характером связей и межчастичным взаимодействием взаимно нерастворимы (металлы нерастворимы в воде и в органических растворителях). [c.114]

    Имеется два типа электрических взаимодействий, влияющих на распределение заряда первое определяет свойства вещества в индивидуальном виде, второе — его поведение в условиях реакции. Первые в основном носят внутримолекулярный характер, хотя в результате их могут возникать и меж-молекулярные взаимодействия, как это происходит при возникновении водородной связи (см. ниже, разд. 2,Б). Значительная информация об этих взаимодействиях может быть получена путем изучения таких физических свойств вещества, как углы и длины связей, температуры плавления и кипения, дипольные моменты, спектральные характеристики, константы молекулярной рефракции и т. п. Взаимодействия второго типа включают первые и, кроме того, еще и изменения обычного распределения заряда в реагирующей молекуле, вызываемые подходом частицы реагента или даже растворителя. Почти все эти взаимодействия, как межмолекулярные, так и внутримолекулярные, могут быть объяснены на основе принципов и фактов, обсужденных в предыдущих главах. Особенно важно помнить, что при этом требуется максимально стремиться к сохранению до тех пор, пока это возможно) стабильного локализованного или делокализованного распределения электронов, характерного для молекулы исходного углеводорода, с учетом спаренного состояния электронов. Последний пункт уже рассматривался на стр. 49 в связи с поляризацией анионов. [c.102]

    Основные типы межмолекулярных взаимодействий в веществах [c.92]

    Различные ион-молекулярные и межмолекулярные взаимодействия могут быть подразделены на пять основных типов, перечисленных в табл. 8.6. Первыми в этой таблице указаны наиболее сильные взаимодействия, за ними следуют более слабые. Рассмотрим, к каким физическим свойствам приводит наличие тех или иных видов взаимодействий в веществе. [c.140]

    I верхности твердых и жидких тел называется адсорб-, цией. Хотя прочность связи молекул среды (адсорбата) с поверхностью твердого тела (адсорбентом) сильно изменяется от системы к системе, равно как и количество адсорбированного вещества, тем не менее все случаи сорбции можно разделить на два основных типа физическую адсорбцию и химическую (хемосорбцию). Между этими двумя типами адсорбции существует достаточно четкое различие. Физическая адсорбция вызывается силами межмолекулярного взаимодействия. Поэтому ее часто называют также вандерваальсовой адсорбцией. Химическая адсорбция сопровождается образованием на поверхности твердого тела поверхностных химических соединений. Природа хемосорбционной связи идентична природе аналогичных связей в химических соединениях, однако специфика поверхности может существенно влиять на характер связи и распределение электронов во взаимодействующих атомах. [c.27]

    Основным типом поперечных химических связей в молекулах природных белков является дисульфидная связь —СНг—3—8—СНг — > образуемая цистином. Кроме того, некоторые типы поперечных химических связей вводятся в макромолекулы белков технического значения для придания им новых ценных свойств. В принципе многие из реакций, используемых для образования поперечных химических связей, подобны реакциям, которые уже рассматривались в настоящем разделе книги как реакции боковых цепей. Основное различие этих реакций заключается в использовании для образования поперечных химических связей не монофункциональных, а би- и полифункциональных реагентов. Если реакционноспособные группы смежных цепей белка расположены подходящим образом относительно друг друга, то их можно ввести в реакцию с двумя реакционноспособными группами бифункционального реагента и получить таким образом в белке искусственно созданную химическую поперечную связь. Внутримолекулярные реакции сшивания могут иногда конкурировать с межмолекулярными кроме того, одна из групп бифункционального реагента может прореагировать с растворителем или другими веществами, находящимися в сфере реакции в этом случае только одна реакционноспособная группа будет взаимодействовать с функциональной группой белка. Такая реакция приводит к образованию новой боковой цепи и снижает соответственно эффективность основной реакции образования поперечных связей. В некоторых случаях взаимодействие. с бифункциональным реагентом может приводить к соединению концов [c.394]


    Величина адсорбции характеризуется количеством вещества, поглощенного 1 м поверхности или 1 г адсорбента, и измеряется в моль/м или в моль/г. Различают два типа адсорбционных процессов физическую и химическую адсорбцию (хемосорбцию). Первый тип адсорбции обусловлен силами межмолекулярного взаимодействия (силами Ван-дер-Ваальса) между молекулами адсорбирующегося вещества и атомами поверхности. Второй тип адсорбции обусловлен силами химического сродства. При физической адсорбции молекулы на поверхности сохраняют в основном свои химические свойства. В этом случае процесс адсорбции можно уподобить конденсации вещества на поверхности твердого тела. При хемосорбции происходит ослабление химических связей, частичный или полный распад молекулы на атомы или радикалы с образованием поверхностных соединений с твердым телом. Хемосорбированные молекулы часто обладают высокой реакционной способностью и могут выступать в качестве промежуточных соединений в каталитической реакции. В некоторых каталитических реакциях скорость адсорбции определяет скорость всего процесса в целом. [c.217]

    Критерием надежного учета основных типов межмолекулярных взаимодействий является возможность достаточно точного расчета (но аддитивному уравнению) индексов удерживания веществ на любых неподвижных фазах. Данные опубликованных работ [20—31] показывают, что точность вычислений зависит от количества членов аддитивного уравнения. В цитируемых работах число слагаемых уравнения варьировалось от двух [20], что дает погрешность около 30 единиц логарифмического индекса, до вось-SH1 [29, 30], что позволяет предсказывать индексы удерживания с точностью до 1—2 единиц. Последняя величина соответствует ошибке экспериментального определения величин удерживания (см. гл. I). В работах Роршнайдера [2] средняя точность предсказания индексов удерживания но трехчленному уравнению составляет 12,6 единицы, по пятичленному — 4,1 единицы. [c.145]

    Основные сведения о сорбционных свойствах материала и характере сорбции на нем определенных веществ могут быть получены из изотерм сорбции, характеризующих зависимость сорбционной способности А от концентрации С (или давления Р) сорбируемого компонента при постоянной температуре А = = /(С) для жидкой фазы или A = f P) для газов. Брунауэр, Эммет и Теллер выделили пять основных типов изотерм сорбции (рис. П. 1). Выпуклые участки изотерм I, II и IV типов указывают на наличие в сорбентах микропор, но, кроме того, сорбенты II и IV имеют еще и макропоры. Изотермы III и V типов встречаются реже и описывают сильное межмолекулярное взаимодействие в веществе сорбата. Крутизна изотермы I типа характеризует размер микропор сорбентов а — ультрамикропори-стых, б — микропористых. Изотерма IV6 принадлежит переходно-пористому сорбенту /Ув —однородно макропористому, а IVа —со смешанной структурой [33]. [c.27]

    Дуслин [256]. В этой работе дан обзор современной научной литературы, посвященной изучению критических явлений, потенциалов межмолекулярного взаимодействия, вириальных коэффициентов, функции PVT, термодинамических свойств и давления пара для многих веществ. Основное внимание уделено экспериментальным исследованиям. Дуслин систематизировал по типу веществ и полученным данным и свел в таблицы результаты ряда исследовательских работ, включая, посвященные избыточным свойствам, функции PVT и уравнениям состояния. [c.108]

    Опыты с моделями отражают в основном влияние химического строения, но, естественно, не могут отражать влияния межмолекулярных взаимодействий в ОМУ, а также возможное каталитическое влияние неорганической части (ионов металлов). В ряде случаев подробно изучалось действие неорганических веществ как катализаторов (см. ниже). Так, данные о термолизе [61] простейших соединений типа СеНб—X—СбН5 дают представление о сравнительной прочности алифатических, эфирных и гетероциклических мостиков (табл. 4.7). [c.115]

    Как правило, большинство из этих видов взаимодействия, а иногда и все они присутствуют в растворах одновременно. Резких переходов от одного типа связи к другому не существует. Нередко встречаются связи, носящие промежуточный характер между ионной и металлической, между гомеополярной и ван-дер-ваальсовой, ионной и гомеополярной и т. д. Однако во многих случаях один из видов межмолекулярного взаимодействия играет основную, определяющую роль в свойствах раствора (или чистой жидкости). Так, например, в смесях расплавленных солей Na l— K l основным видом взаимодействия является ионная связь между ионами Na+, К+иС1 . В растворах органических и неорганических неэлектролитов ведущая роль принадлежит остаточным или ван-дер-ваальсовым силам. В сплавах металлов основное значение имеет металлическая связь. Присутствие отталкива-тельных сил необходимо, конечно, учитывать во всех случаях. В тех случаях, когда различные типы связей играют равноценную роль, трудности теоретического анализа свойств вещества сильно возрастают. Так, например, в концентрированных растворах электролитов (солей, кислот, оснований) в воде необходимо учитывать не только силы, действующие между растворенными ионами, но и взаимодействие ионов с молекулами воды, а также взаимодействие молекул воды друг с другом. Поэтому задача построения теории концентрированных растворов электролитов в воде оказывается трудно разрешимой. Наоборот, в разведенных растворах электролитов решающую роль играют лишь силы, действующие между растворенными ионами. Именно поэтому теория разведенных растворов электролитов была развита в первую очередь и с успехом. [c.55]

    Когезионные свойства полимеров. Силы К. определяют комплекс физич. и физико-химич. свойств вещества агрегатное состояние, летучесть, растворимость, механич. характеристики, поверхностные свойства и т. д. Энергия межмолекулярного взаимодействия и, как следствие, механич. свойства линейных полимеров зависят прежде всего от след, основных факторов 1) типа и числа атомных групп, входящих в состав молекулярной цепи, и 2) геометрич. формы и длины макромолекулы. Эпергия К. различных групп, встречающихся в полимерах, колеблется в довольно широких пределах от 1,6 до 37 кдж/молъ (от 0,4 до 8,7 ккал/молъ) (см. табл. 3). Механическая (когезионная) прочность полимерных материалов обычно хорошо ког)пелирует с энергией К. взаимодействующих групп.Так, полярные карбо-и гетероцепные полимеры при прочих равных условиях (средней длине цепи, полидисперсности, степени кристалличности, разветвленности и т. п.) обладают более высокими прочностными характеристиками, чем неполярные. [c.520]

    Аналогичная картина наблюдается и в случае бензолов. Температуры кипения моно- и полизамещенных фторбензолов почти такие же, как у незамещенного бензола, т.е. близки к 80°С - от 76 (1, 3, 5-три-фторбензол) до 95°С (1, 2, 3, 4-тетрафторбензол). Пента- и гексафтор-бензолы по температуре кипения почти не отличаются от бензола (табл. 1.3). В то же время в случае хлорзамещенных бензолов при введении каждого атома хлора наблюдается существенное повышение температуры кипения, а гексахлорбензол представляет собой твердое вещество с высокой температурой плавления. Низкие температуры кипения при высоких молекулярных массах указывают на то, что межмолекуляр-ное притяжение обусловлено в основном слабыми неполярными взаимодействиями типа вандерваальсовых сил при отсутствии полярных меж-молекулярных сил, обусловленных диполь-дипольными взаимодействиями или водородными связями. Таким образом, в отличие от обладающей высокой полярностью связи с — С1 связь С — F с ее малым межатомным расстоянием, несмотря на высокую электроотрицательность фтора, характеризуется низкой полярностью и высокой прочностью. Слабость межмолекулярных взаимодействий в соединениях фтора обусловливает также их высокую летучесть, склонность к возгонке, а также низкие величины поверхностной энергии и способность растворять газообразные вещества. Эти специфические физические свойства соединений фтора открывают перед ними широкие возможности практического использования. [c.11]

    Органические вещества. Основную часть органического вещества природных вод составляют гумусовые соединения, которые образуются при разложении растительных остатков. Водный гумус содержит в основном лигнино-протеиновые соединения. В состав его входят также углеводы, л<иры и воск. Почвенный гумус включает в себя нерастворимый гумин, перегнойные кислоты и другие продукты распада сложных органических веществ. Перегнойные (гумусовые) кислоты делятся на гумииовые (гуминовая и ульми-новая) и фульвокислоты (креповая и апокреновая). Гуминовые кислоты — высокомолекулярные соединения, продукты конденсации ароматических соединений типа фенола с аминокислотами и протеинами. Их строение еще недостаточно изучено. В зависимости ОТ размера молекул гуминовые соединения могут образовывать в воде истинные, коллоидные растворы и взвеси. Гуминовые кислоты способны, вследствие межмолекулярных взаимодействий, образовывать агрегаты молекул — мицеллы. Мицеллярная масса гуминовых кислот составляет 3700—8270. Фульвокислоты — высокомолекулярные соединения типа оксикарбоновых кислот, содержащие азот, с меньшим количеством углеродных атомов, чем гуминовые. Кислотные свойства у них выражены достаточно сильно. Концентрация органических веществ (водного гумуса) может достигать 50 мг/л и выше. Гуминовые кислоты составляют незначительную [c.62]

    Выше указывалось, что переработка ароматических полиамидов в такие материалы, как волокна, пленки, производится их формованием из концентрированных растворов. Выбор растворителей для ароматических полиамидов, как правило, хорошо кристаллизующихся и отличающихся сильным межмолекулярным взаимодействием, довольно ограничен. Для приготовления концентрированных растворов пригодны в основном полярные апротонные органические вещества амидного типа (диметилформамид, диметилацетамид, гексаметилфосфорамнд, М-метил-2-иирролидон, N,N,N N -тeтpaмeтилмoчeaинa и др.) либо концентрированные кислоты, главным образом концентрированная серная кислота. Амидные растворители используют для относительно гибкоцепных и сравнительно хорошо растворимых ароматических полиамидов мета-замещенных полиамидов, в частности поли-ж-фениленизофталамида, сополиамидов типа [c.161]

    После подстановки численных значений /г и с получим АЕ = 28635-где АЕ выражено в ккал моль, а Л. — в ммк. В видимой и ультрафиолетовой областях спектра АЕ = 30—300 ккал моль. На эту энергию может накладываться энергия колебательных и вращательных переходов (в газовой фазе). Величина энергии колебательных и вращательных переходов составляет 0,1— Ъккал молъ. Вращательные, а зачастую и колебательные переходы в жидкой фазе не всегда могут наблюдаться из-за усиливающегося межмолекулярного взаимодействия молекул основного вещества или этого же вещества с [растворителем. Поэтому электронный спектр представляет собой плавную кривую поглощения, обусловленную электронно-колебательными переходами. Типы электронных переходов показаны на рис. 1. [c.7]

    Газохроматографическая аппаратура обычного типа приспособлена к длительной работе с одной неизменной колонной. Однако при изучении специфических межмолекулярных взаимодействий и комплексообразования в растворах предъявляются иные требования к аппаратуре. Чтобы измерять константы ассоциации хроматографируемого вещества с комплексообразующей добавкой в растворителе, нужно варьировать состав неподвижной фазы и, следовательно, менять колонну. При работе с чистыми растворителями, нужно варьировать эти растворители, также меняя колонну, причем основной интерес представляют простые летучие соединения, для работы с которыми обычные газохроматографические колонны оказываются непригодными. Для таких измерений более удобны или неза- [c.162]

    Механизм адгезии парафиновых частиц к поверхностям различной природы невозможно понять без рассмотрения хотя бы в общих чертах особенностей кристаллической струиуры и электронной конфигурации твердых веществ, без представления закономерностей, которым подчиняются их свойства с изменением энергетического состояния. Принято считать, что однородное твердое вещество, состав и плотность которого практически одинаковы во всем объеме любых его образцов (т.е. они не отклоняются от средних значений больше, чем на величину ошибки измерения соответствующего параметра), представляет собой твердое химическое соединение /68/. Существенной особенностью твердого соединения является то, что любые его отдельные части - твердые тела - имеют поверхность. Поверхностный слой твердого вещества, толщиной порядка 10А (около 3-4 монослоев соответствующих структурных единиц), из-за неуравновешенного взаимодействия частиц слоя с частицами основной массы имеет несколько иное строение, что приводит к заметному отличию свойств этого JlJ i от глубинного вещества. Твердое вещество в отличие от газа и жидкости, имеет практически не изменяющееся во времени строение. При этом тип строения ве1цества определяется прежде всего тем, какие связи соединяют его структурные единицы - межмолекулярные или межатомные. [c.106]

    Все соли состоят из какой-либо кислоты и какой-либо щелочи... Из этих двух универсальных принципов составлены все тела мира, — писал немецкий химик и аптекарь Отто Тахений в 1680 г. В реакциях кислот и кислотных оксидов с основаниями и основными оксидами, при многих других обменных взаимодействиях образуются соединения, называемые солями. Соли — это кристаллические вещества, построенные из ионов. В воде и других полярных растворителях соли распадаются (диссоциируют). Если же кристаллическое вещество состоит из молекул, связанных межмолекулярными химическими связями, то оно к числу солей не относится, это молекулярное соединение такого типа, как дихлорид ртути Hg lg. Молекулярные соединения, в отличие от солей, в воде ведут себя как слабые электролиты и почти не распадаются на ионы. [c.89]

    К ВМС относятся многие вещества, имеющие важное народнохозяйственное и биологическое значение. Сюда входят почти все синтетические волокна, пластмассы, каучуки, а также почти все материалы животного и растительного происхождения. Синтетические полимеры получаются методами полимеризации и поликонденсации. Характерной особенностью ВМС является наличие длинных цепных молекул, образованных из многих звеньев одинакового или различного химического строения с молекулярным весом от нескольких тысяч до миллионов. Молекулы могут иметь линейную форму (полиэтилен, целлюлоза), разветвленную (крахмал) или спиральную форму (белки, нуклеиновые кислоты). Вдоль цепи атомы связаны ковалентными связями, а между цепями возникают межмолекулярные силы взаимодействия типа Вандерваальсовых сил, которые действуют в обычных жидкостях. Цепи могут быть связаны поперечными химическими связями (вулканизованный каучук) и тогда полимеры имеют строение пространственной сетки. Свойства полимера зависят от длины цепи, природы атомов, входящих в состав молекулы, распределения атомов в цепи, взаимодействия молекулы с окружающей средой, с соседними молекулами полимера или с молекулами жидкости в растворе. Звенья молекулярной цепи ВМС обладают способностью к ограниченному взаимному вращению вокруг валентных связей, это приводит к гибкости цепи и возможности изменения ее конфигурации. Одну из основных групп ВМС составляют каучукоподобные вещества или эластомеры, способные к большим обратимым (высокоэластическим) деформациям. Все они содержат длинные цепные молекулы, отличающиеся высокой гибкостью. Если [c.284]


Смотреть страницы где упоминается термин Основные типы межмолекулярных взаимодействий в веществах: [c.275]    [c.71]    [c.523]    [c.414]   
Смотреть главы в:

Научные и прикладные аспекты теории нефтяных дисперсных систем -> Основные типы межмолекулярных взаимодействий в веществах




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие межмолекулярное

Межмолекулярные



© 2025 chem21.info Реклама на сайте