Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Параметры эмпирические

    Программа определения методом наименьших квадратов параметров эмпирической зависимости [c.356]

Таблица 17.6 Параметры эмпирической зависимости (17.6) Таблица 17.6 Параметры эмпирической зависимости (17.6)

    Эмпирическая кривая распределения выравнивается теоретической кривой. Общее правило выравнивания состоит в следующем. В теоретическое распределение (в его дифференциальную или интегральную функцию плотности вероятности) подставляют параметры эмпирического закона распределения, а затем рассчитывают ординаты середин всех интервалов. Умножая их на число исследуемых деталей N и исключая грубые ошибки, получают теоретические значения частот отклонений размера, которые и дают выравненную кривую. [c.50]

    Таким образом, теоретические функции для эмпирического распределения подбирают в следующем порядке по опытным данным строят эмпирическую кривую, определяют параметры эмпирического распределения выдвигают гипотезу о функции плотности распределения случайной величины, исходя из внешнего вида экспериментальной кривой и влияющих на ее вид значений технологических факторов. Эмпирическую кривую выравнивают по теоретической, сравнивают по одному из критериев согласия эмпирической и теоретической (выравненной) кривой принимают функцию, дающую наилучшее согласие и по ней определяют искомые параметры. [c.119]

    Существует более простой, но несколько менее строгий способ вычисления параметров эмпирического уравнения, в котором алгебраическую сумму отклонений полагают равной нулю  [c.21]

    А — работа а, Ь, й — параметры эмпирических уравнений а — коэффициент термического расширения ат — коэффициент термодиффузии а — активность [c.304]

    В прецизионных исследованиях помимо тепловых колебаний атомов учитывается (и уточняется) также ряд других побочных факторов, воздействующих на интенсивность дифракционных лучей, в частности, параметры эмпирической формулы, учитывающей вторичную экстинкцию (см. гл. IV, 1). [c.157]

    Для вычисления теплоты, поглощаемой при нагревании газа от одной температуры до другой, удобно представить как функцию температуры. Параметры эмпирического уравнения [c.28]

Рис. 167. Схема прибора для определения параметров эмпирического равновесия электрохимическим методом [ ]. Рис. 167. <a href="/info/1704624">Схема прибора</a> для <a href="/info/1616456">определения параметров эмпирического</a> <a href="/info/6249">равновесия электрохимическим</a> методом [ ].
    А. И. Китайгородский предложил метод расчета энергии решетки молекулярных кристаллов с помощью атом — атом потенциалов . Каждый атом, входящий в молекулу, рассматривается как некоторый силовой центр. Энергия взаимодействия молекул равна сумме энергий парных взаимодействий атомов i и /, принадлежащих разным молекулам. Энергии взаимодействия атомов Езависят лишь от сорта атомов. Они не зависят от того, в какую молекулу и в каком валентном состоянии атомы входят. Для Емогут быть приняты различные аналитические выражения, например потенциал Леннарда—Джонса и др. Параметры эмпирических соотношений подбираются так, чтобы, зная все межъядерные расстояния в кристалле, можно было получить правильное значение энергии решетки кристалла. Подробное описание этого метода и примеры его применения приведены в монографии А. И. Китайгородского Молекулярные кристаллы [59] и обзоре П. М. Зоркого и М. А. Порай-Кошица [60]. Метод атом—атом потенциалов дает возможность подобрать межатомные потенциалы на основе экспериментальных данных для нескольких представителей какого-либо класса органических веществ, а затем применять полученные кривые для вычисления свойств всех остальных веществ этого класса. Так, например, зная потенциалы взаимодействия атомов С и С, С и Н, Н и Н, можно рассчитывать энергию и ряд других свойств множества кристаллов углеводородов. [c.98]


    Для оценки параметров эмпирической модели используют главным образом метод наименьших квадратов, основы которого изложены в разд. 12.5.4. После нахождения параметров поверхность отклика можно представить в виде графической зависимости отклика от величин факторов. Приведенный далее пример моделирования поверхности отклика также взят из данных по разработке ферментативной методики определения церулоплазмина (см. табл. 12.4-4). [c.507]

    Неопределенность связей между параметрами модели может выражаться в том, что или неизвестен вид соответствующих зависимостей, или общие соображения о виде связи априори ясны, но само ее аналитическое описание затруднено. Здесь часто применяются приемы частичного устранения возникающей неопределенности. Первое — это принятие некоторой априорной гипотезы о классе функций (степенных, показательных, линейных и т.д.), которыми описывается исследуемая зависимость. После этого возникает традиционная задача определения параметров эмпирических формул по имеющимся данным наблюдений. Такой прием широко используется, например, в различных методах определения расчетных гидрологических характеристик [Международное руководство..., 1984]. Второе — это выявление характера связей между параметрами модели посредством постановки вычислительных экспериментов над самой моделью, что типично для имитационных моделей функционирования ВХС (см. часть III настоящей монографии). [c.68]

    Целью данной работы является определение вида и параметров эмпирической зависимости механической мощности, потребляемой роторным кавитационным массообменным аппаратом, от геометрических и конструкционных характеристик аппарата. [c.131]

    Среди существующих методов можно выделить теоретические, основанные на физически обоснованных корреляциях между молекулярными и макроскопическими параметрами, эмпирические, в которых применяется подбор математических зависимостей между совокупностями значений правильно выбранных свойств, и полу-эмпирические. В последних устанавливаются такие соотношения между параметрами, которые могут быть обоснованы теоретически, но для согласования с экспериментом нуждаются во введении дополнительных эмпирических коэффициентов. [c.40]

    Пропускная способность С кг/(м-с) аппарата шириной 1 м связана с его конструктивными и режимными параметрами эмпирическим соотношением [c.121]

    В уравнения математического описания входят параметры (эмпирические соотнощения и эмпирические константы), которые определяются по экспериментальным данным. Тем самым модель подстраивается под эксперимент. [c.14]

    Переходим к иллюстрации применения методов подбора параметров эмпирических уравнений, описанных в предыдущем разделе. Мы покажем все стадии этого несколько запутанного процесса, включая предварительное исследование данных ддя выявления выпадающих (неправильных) точек. Подбору подлежат параметры двух уравнений уравнения Антуана, как самого типичного из более простых уравнений, и видоизмененного уравнения Антуана, как примера более сложной зависимости. Используемые данные были получены Симоном и Гутером [139] для изобутиламина и приведены в табл. 17. [c.420]

    Для того чтобы представить данные о коэффициентах активности с точностью того же порядка, что и точность измерений, необходимы несколько более сложные уравнения. В данной главе мы рассмотрим основные уравнения, получившие наибольшее распространение. Более старые уравнения подробно рассмотрены в работе [50]. Для нахождения наилучших значений параметров эмпирических уравнений из экспериментальных [c.186]

    Из уравнений (12.33) и (12.35) следует, что —это безразмерный параметр, равный отношению энергии взаимодействия полимера с молекулами растворителя к кинетической энергии кТ, который не должен зависеть от концентрации раствора. Это параметр эмпирический, и ниже приведены способы его определения. [c.346]

    Пользуясь таким методом, можно получить последовательное описание пионных атомов, а также сечений упругого пион-ядерного рассеяния и реакций по всей периодической системе. Как и ожидалось, параметры эмпирического оптического потенциала слабо зависят от энергии. Типичный набор параметров приведен в табл. [c.242]

    Оба приведенных примера характеризуют тенденцию использования кинетических представлений о разрушении и деформировании для анализа сложных случаев разрушения твердых тел и для целей научно обоснованного прогнозирования долговечности твердых тел в реальных условиях их эксплуатации. Это представляется полезным и подчеркивает плодотворность представлений о термофлуктуационной природе процессов разрушения и деформирования. Здесь можно лишь повторить, что к попыткам интерпретации физического смысла параметров эмпирических формул, описывающих кинетику разрушения в подобных сложных случаях, надо относиться с особой осторожностью. [c.442]

    Критические параметры эмпирические зависимости [c.177]

    Успенский А. К-, Выбор вида и нахождение параметром эмпирической формулы, Физматгиз, 1960. [c.186]

    Величина е определяется закономерностями расширения струи в ограниченном пространстве. Теория расширения струй применительно к рассматриваемому случаю в настоящее время не разработана, в связи с чем авторами была сделана попытка определить величину е на основании опытных данных и обобщить ее зависимость от определяющих параметров эмпирическим путем. На основании наших опытных данных и опытных данных других авторов по величине были [c.185]


    Описание коэффициентов и параметров Эмпирические параметры в модели отсутствуют. [c.269]

    Следует отметить, что при обработке экспериментальных данных с использованием уравнений (УП.4.33), 1УП.4.34) одни и те же диэлектрические спектры в пределах точности эксперимента можно описать разными функциями распределения /33,54/. Кроме того, параметры эмпирических уравнений 1УП.4.33), (УП.4.34) представляют собой лишь некоторые эффективные, формально введенные характеристики всей совокупности процессов, протекающих в жидкости. Поэтому исследование эмпирических траметров позволяет выявить лишь качественные закономерности, но не дает количественной информации о кинетике молекулярных процессов. [c.124]

    Адамсон с сотр. [171—173] использовали для описания полученных эллипсометрически изотерм полимолекулярной адсорбции паров различных жидкостей на плоских подложках эмпирическое уравнение, выключающее два экспоненциальных члена, один из которых должен учитывать силы Ван-дер-Ваальса (П >0), а второй — структурные силы (П < 0). Параметры эмпирического уравнения были найдены из сравнения с экспериментальными изотермами в области р1ра <1- Аппроксимация эмпирической изотермы (с найденными параметрами) на область plps p позволила найти из уравнения Фрумкина—Дерягина [127] теоретические значения краевого угла, близко совпавшие с экспериментально измеренными для той же системы [173]. [c.234]

    II Визуальное сравнерше опытной кривой с теоретической вносит неточнооги субъективного характера. Поэтому целесообразнее вычислить статистические параметры эмпирического распределения и определить искомую величину В или Л путем решения уравнений, приведенных в таблице. [c.536]

    Для характеристики технологической точности электрохимически процессов металлопокрытий псполЬзуют параметры эмпирическим расп )вделений, которые обычно соответствуют нормальному или лога- [c.664]

    Параметры эмпирического распределения толщинш покрытия можно применять для статистического контроля гехяологическрго процесса по ГОСТ 1694 —71, а также оценки зависимых от толщины показателей качества покрытии, например, их защитной способное- № Ц  [c.666]

    Релевантные характеристики структуры молекул по-разному соотносят с характеристиками атомов, групп атомов, типов связей и т. д., для которых назначаются соответствующие весовые коэффициенты, а значение свойства определяют обычно каким-либо алгебраическим действием. Взвешенные характеристики часто складывают — при прямом расчете свойства или при определении поправки к его значению, полученному из приближенного теоретического соотношения. Например, метод Лидерсена для расчета Тс основай на простейшем правиле, согласно которому значения нормальной температуры кипения и критической температуры соотносятся приблизительно как 2 3. Затем для получения параметра, эмпирически. корректирующего это соотношение, используются аддитивные структурные составляющие, зависящие от типа связей. [c.16]

    Эффективность выражений (2.50) — (2.52) может быть проверена сопоставлением с результатами точных расчетов для простых атомов и с параметрами эмпирических атом-атом потенциалов, получаемыми из анализа свойств газов (второго вириального коэффициента и вязкости). При этом оказывается, что наиболее удовлетворительной является формула Слетера — Кирквуда (2.51), которая дает хорошее согласие для простых атомов (Не, Ыеипр.) и заниженные значения а для других атомов, формула Лондона (2.50) приблизительно в 2—2,5 раза недооценивает дисперсионное притяжение, а формула (2.52) — несколько переоценивает его. Детальный анализ различных приближений дан в статье Сэйлема [84], где были предложены более сложные, но зато и более точные выражения. В табл. 2.2 приведено сравнение коэффициентов а, вычисленных разными методами, с результа- [c.88]

    В этом разделе мы очень кратко познакомимся с различными улучшениями метода МОХ, а также с его распространением на другие системы (например, системы с ст-связями — расширенный метод МОХ , или усовершенствованная теория Хюккеля). Мы остановимся на учете интегралов перекрывания и вариации кулоновского и резонансного интегралов. Но до этого следует сказать несколько слов о принципиальных границах применимости метода Хюккеля, которые еще много раз будут нам встречаться. я-Электронное приближение нереалистично уже потому, что оно предполагает 0-остов непо-ляризуемым, а я-уровни лежащими выше, чем о-уровни. Однако расчет аЬ initio молекулы бензола методом МО ССП с учетом всех 42 электронов показывает, что даже в этой идеальной хюккелевской системе я-уровни могут лежать глубже, чем ст-уровни. Несмотря на то что допущения простого метода МОХ в большинстве случаев далеки от действительности, расчеты аЬ initio методом МО ССП для я-электронных систем требуют чрезвычайно больших трудоемких вычислений. Поэтому в настоящее время в квантовой химии я-систем господствует в основном упрощенное Паризером, Парром и Поплом приближение МО ССП. В этом методе, называемом методом ППП (иногда П -методом), для определения одно-и многоэлектронных интегралов используют параметры, эмпирически экстраполированные из потенциалов ионизации и электронного сродства (подробно метод ППП мы не рассматриваем). [c.236]

    Значение потенциала, равное -0,85 В, выбрано и используется специалистами в качестве базового для сравнения на том основании, что поляризация стальных конструкций до указанного значения 17 = -0,85 В) относительно медно-сульфатного (Си/Си304) электрода и его стабильное поддержание на таком уровне обеспечивают полную защиту стали от коррозии. Этот параметр, эмпирически установленный в 1928 г. и подтвержденный в дальнейшем многолетними наблюдениями, в настоящее время является повсеместно принятым критерием катодной защиты стали. [c.101]


Смотреть страницы где упоминается термин Параметры эмпирические: [c.40]    [c.155]    [c.17]    [c.63]    [c.666]    [c.274]    [c.419]    [c.419]    [c.90]   
Химические приложения топологии и теории графов (1987) -- [ c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Введение в параметры атом-ионного потенциала эмпирической поправки на основе сопоставления теоретически рассчитанных и полученных из эксперимента значений константы Генри

Другие эмпирические параметры

Корреляция эмпирических параметров растворителей с величинами Z врл

Критические параметры эмпирические зависимости

Подбор параметров эмпирических уравнений, примеры

Программа определения методом наименьших квадратов параметров эмпирической зависимости

Экспериментальное определение геометрических параметров органических молекул. Обобщение эмпирического материала

Эмпирические данные и зависимости для вычисления термодинамических величин и параметров

Эмпирические методы вычисления критических параметров

Эмпирические параметры метода ППП

Эмпирические параметры на основе измерения равновесий

Эмпирические параметры на основе кинетических измерений

Эмпирические параметры на основе спектроскопических измерений

Эмпирические параметры полярности растворителей

Эмпирические параметры растворител

Эмпирические параметры растворителей

Эмпирический подход к спектральным параметрам

Эмпирическое определение параметров

распределенными параметрам эмпирические



© 2025 chem21.info Реклама на сайте