Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конфигурации атомов электронные

    Для двухэлектронной системы, такой, как атом гелия в состоянии электроны в синглетном состоянии (спины антипараллель-ны) имеют тенденцию к совместному стягиванию, тогда как в триплетном состоянии (спины параллельны) наблюдается об-ратное Этот факт является не результатом действия сил отталкивания между электронами, а следствием требуемого вида волновой функции, учитывающей принцип неразличимости электронов. Для атома гелия, в котором электроны находятся на ненаправленных ч-орбиталях, пространственное распределение электронов следующее для симметричного, или синглеттюго состояния наиболее вероятны три конфигурации — две, в которых один электрон находится ближе, а другой дальше от ядра, и третья, в которой оба электрона находятся одновременно одинаково близко от ядра для антисимметричного, или триплетного состояния наибольшую вероятность имеют только две конфигурации — один электрон находится ближе, а другой дальше от ядра. Так как з-орбитали не содержат угловой зависимости, электронная корреляция (корреляция между положениями электронов) будет только радиальной. Сточки зрения стереохимии интересны волновые функции, которые включают угловую зависимость. В связи с этим ниже более детально будет рассмотрен атом гелия в состоянии з -2р1. [c.201]


    АКТИНОИДЫ (актиниды), семейство из 14 радиоактивных элементов III гр. 7-го периода периодич. системы (ат. н. 90-103), следующих за актинием торий ТЬ, протактиний Ра, уран и, нептуний Np, плутоний Ри, америций Аш, кюрий Ст, берклий Вк, калифорний СГ, эйнштейний Ез, фермий Рт, менделевий М<5, нобелий N0 и лоуренсий Ьг (для последних двух элементов название не общепринято). А. объединяются, подобно лантаноидам, в особую группу благодаря сходству конфигураций внещ. электронных оболочек их атомов (см, табл.), чем обусловлена близость мн. хим. св-в. Гипотеза о существовании в 7-м периоде семейства А. была выдвинута Г. Сиборгом в начале 1940-х гг. [c.78]

    Решение. Электронная конфигурация атом а кремния ls 2s 2p 3s-3p . Электронное строение его валентных орбиталей в невозбужденном состоя [ии может быть представлено следующей-графииеской схемо]  [c.55]

    В соответствии с электронной конфигурацией атом кислорода может образовать две о-связи (координационное число атома кислорода в этом случае равно двум), либо иметь координационное число три или четыре за счет образования одинарных ковалентных связей. [c.470]

    Центральный атом кислорода напоминает по конфигурации атом азота — он отдал один спаренный 2р-электрон одному из крайних атомов кислорода и стал трехвалентным. Отсюда заряды (+) и (—). Таково же происхождение четырехвалентного азота в азотной кислоте [85, стр. 581, [10, стр. 182]  [c.91]

    Конфигурация внешних электронов Атомный объем, см /г-атом. . .  [c.82]

    Периодически изменяется и сродство к электрону. Под последним понимают энергию, которая выделяется при присоединении электрона к нейтральному атому, т.е. энергию процесса Э + е" = Э. Наибольшим сродством к электрону характеризуются р-элементы УП группы. Наименьшие (и даже отрицательные) величины сродства к электрону имеют атомы с конфигурацией внешних электронов па и благородные газы. Ниже приведены величины сродства к электрону для некоторых элементов  [c.51]

    V гр. периодич. системы ат. н. 83, ат. м. 208,9804. В природе один стабильный изотоп ° BL Короткоживущие радиоактивные изотопы с мае. ч. от 210 до 215 и периодами полураспада от 2 мин до 5 сут-члены прир. радиоактивных рядов. Поперечное сечение захвата тепловых нейтронов для В. 3,4-10 м . Конфигурация внеш. электронной оболочки 6s 6p степени окисления -1-3, -1-5 и [c.379]

    Понятие орбиталь широко используется при рассмочрснии электронной конфигурации ато.мов. [c.39]

    Конфигурация внешних электронных оболочек нейтрального атома азота 2з р . Атом имеет три неспаренных электрона (рис. 3.42) и может образовать три ковалентные связи. В результате допорно-акцепторного взаимодействия атом азота может приобретать положительный или отрицательный заряд. В ионе имеется четыре неспареиных электрона в этом состоянии азот четырехвалентен. Ион Ы- имеет два неспареиных электрона и может образовать только две ковалентные связи. Указанные состояния различаются также числом иеподеленных электронных пар у № одна, у М+ их ист, а Ы- имеет две. [c.394]


    Основываясь на данных выводах, можно составить типичную электронную конфигурацию любого элемента таблицы ПС. Рассмотрим в качестве примера атом гафния 72Hf. Элемент Hf располагается в 6-м периоде, поэтому его полная электронная конфигурация включает электронную конфигурацию предшествующего элемента из группы благородных газов ксенона, указываемую в виде символа элемента (s4Xe) в квадратных скобках [Хе], с добавлением электронной [c.77]

    Подобная близость свойств объясняется тем, что в высшей степени окисления атом элемента, находящегося в третьем периоде (в главной подгруппе) и атомы элементов побочной подгруппы приобретают сходное электронное строение. Например, атом хрома имеет электронную конфигурацию 1з Когда хром находится в степени окисления 4-6 (например, в оксиде СгОз), шесть электронов его атома (пять М- и один 4б-электрон) вместе с валентными электронами соседних атомов (в случае СгОз — атомов кислорода) образуют общие электронные пары, осуществляющие химические связи. Остальные электроны, непосредственно не участвующие в образовании связей, имеют конфигурацию отвечающую электронной структуре благородного газа. Аналогично у атома серы, находящегося в степени окисления -Ьб (например, в триокси-де серы ЗОз), шесть электронов участвуют в образовании ковалентных связей, а конфигурация остальных (1з 28 р ) также соответствует электронной структуре благородного газа. Короче говоря, сходство в свойствах соединений элементов побочной подгруппы и элемента третьего периода той же группы обусловлено тем, что их ионы, отвечающие высшим степеням окисления, являются электронными анапогами. Это легко видеть из данных табл. 21.1. [c.497]

    Причиной несоответствия валентности количеству неспаренных электронов является следующее. Приведенные в табл. 7 электронные конфигурации внешних электронных оболочек характерны для основных состояний свободных атомов. Атом, вступающий в химическое взаимодействие илИ образующий химические связи, уже не является свободным. Конфигурация внешней электронной оболочки такого атома может измениться, электроны могут возбуждаться (расспари-ваться) и занимать в пределах данного энергетического уровня (оболочки) имеющиеся нустые (вакантные) орбитали. В результате расспаривания электронов валентность атома будет повышаться. [c.72]

    Конфигурация внешних электронных оболочек нейтрального атома азота Атом имеет три иеспаренных электрона (рис. 3.36) и может образовать три ковалентные связи. В результате донорно-акцепторного взаимодействия атом азота может приобретать положительный или отрицательный заряд. В аоэбужденном ионе К имеется четыре не-спаренных электрона, в этом состоянии азот образует четыре ковалентные связи. Ион Г имеет два неспаренных элект- рона и может образовать только две ковалентные связи.  [c.397]

    БЕРКЛИЙ (от Беркли, Berkeley-город в США, где был открыт Б. лат. Berkelium) Вк, искусственный радиоактивный хим. элемент Ш гр. периодич. системы ат. н. 97 относится к актиноидам. Стабильных изотопов не имеет. Получены 10 изотопов с мае. ч. 240-251 (кроме 241). Наиб, долгоживущие Вк (7,,2 1380 лет а-излучатель) Вк (Т,/2 314 сут -излучатель). Конфигурация внеш. электронных оболочек атома 5/ 6s 6p d 7i степени окисления -f3 (наиб, устойчива), +4 энергия ионизации Вк - Вк 40,8 эВ электроотрицательность по Полингу 1,0-1,2 ионные радиусы Вк 0,0935 нм, Вк -" 0,0870 нм. [c.282]

    Из этих данных видно, что, только начиная с 95 элемента Ат, электроны распределяются в атомах актиноидов так же, как в атомах лантаноидов У атомов первых пяти элементов возможны по две конфигурации распределения, и окончательно выбрать истинную из них пока не представляется возможным. Несомненно, что элемент кюрий, подобно гадолинию, делит семейство пополам, а элементом лоуренси-ем это семейство заканчивается. Очевидно, что, начиная с атома 97-го элемента — берклия, в орбиталях 5/-подуровня появляются парные электроны. [c.61]

    Важно подчеркнуть, что выводы теории ОЭПВО о геометрическом строении молекул легко экстраполируются на более сложные молекулы и ионы, чем рассмотренные в табл. 10.3—10.5. В каждом случае необходимо выделить фрагмент, содержащий центральный атом, координирующий около себя другие атомы или их группировки, и установить число и тип окружающих данный атом электронных пар. Таким образом, нетрудно определить, например, структуру молекулы Ра. Каждый атом фосфора в ней имеет три соседа и, кроме того, сохраняет одну неподеленную электронную пару. Следовательно, должна реализоваться тетраэдрическая конфигурация осей электронных пар, отвечающая молекулярной структуре XXIV  [c.403]

    Число алектронов Центральный атом Электронная конфигурация Число неспарен ных электронов Основное состояние [c.390]

    АЗОТ (от греч а-- приставка, здесь означающая отсутствие, и 2оё-жизнь, лат Nltrogenшm от nitrum - селитра и греч gennao-рождаю, произвожу) N, хим элемент V гр периодич системы, ат н 7, ат м 14,0067 Прир А состоит из двух стабильных изотопов-(99,635%) и (0,365%) Конфигурация внеш электронной оболочки 2s 2p , степень окисления от -Ь 5 до — 3, энергия ионизации при последоват переходе от N к N соотв 14,533, 29,600, 47,454, 77,470, 97,886, 552,070, 667,010 эВ, электроотрицательность по Полингу 3,05, радиусы ковалентный 0,074 нм, Ван-дер-Ваальса 0,15 нм, ионные (в скобках указаны координац числа) для 0,132 нм (4), для 0,030 нм (6), для 0,004 нм (3) и 0,027 нм (6) [c.58]


    ГАДОЛИНИИ (от имени Ю. Гадолина лат. Gadolinium) Gd, хим. элемент III гр. периодич. системы, ат. н. 64, ат. м. 157,25 относится к редкоземельным элементам (входит в иттриевую подгруппу лантаноидов). Состоит из семи стабильных изотопов с мае. ч. 152, 154-158, 160. Поперечное сечение захвата тепловых нейтронов 4,6-10 м . Конфигурация внеш. электронных оболочек 4/ 5s 5p 5d 6s степень окисления + 3, редко н- 2 и н- 1 энергия ионизации Gd -  [c.450]

    АЛЮМИНИЙ (от лат alumen, род падеж alumi-nis-квасцы, лат Aluminium) Al, хим элемент П1 гр периодич системы, ат н 13, ат м 26,98154 В природе один стабильный изотоп А1 Поперечное сечение захвата тепловых нейтронов 215 10 м Конфигурация внеш электронной оболочки 3s 3p, степень окисления + 3, менее характерны + 1 и + 2 (только выше 800 С в газовой фазе), энергия ионизации АГ -> А1 -> Ар -> А1 соотв 5,984, 18,828, 28,44 эВ, сродство к электрону 0,5 эВ, электроотрицательность по Полингу 1,5, атомный радиус 0,143 нм, ионный радиус А1 (в скобках указаны координац числа) 0,053 нм (4), 0,062 нм (5), 0,067 нм (6) [c.116]

    III гр. периодич. системы ат.н. 95 относится к актиноидам. Стабильных изотопов не имеет. Получены 13 изотопов с мае.ч. 237-246, в т.ч. ядерные изомеры изотопов Ат и Ат. Наиб, долгоживущие изотопы Ат(Т,д 432 года) и Ат(Т,,2 370 лет)-а-излучатели (а-излучение сопровождается 7-излучениемО. Конфигурация внеш. электронных оболочек атома 5/ 6s 6p 7s степень окисления от -1-2 до +1 (наиболее характерна -1-3) энергия ионизации Am ->Am 6,0 эВ электроотрицательность по Полингу 1,0-1,2 атомный радиус 0,174 нм ионные радиусы Ат , Ат +, Ат и Ат соотв. 0,0962, 0,0888, 0,0860 и 0,0800 нм. [c.125]

    БАРИЙ (от греч. barys-тяжелый лат. Barium) Ва, хим. элемент 11 гр. периодич. системы, ат. н. 56, ат. м. 137,33 относится к щелочноземельным элементам. Прир. Б. состоит из семи стабильных изотопов с мае. ч. 130, 132, 134-137 и 138 (71,66%) Поперечное сечение захвата тепловых нейтронов 1,17-10 Конфигурация внеш. электронной оболочки [c.241]

    БОР (от позднелат. borax-бура лат. Borum) В, хим. элемент III гр. периодич. системы, ат. н. 5, ат. м. 10,811. Прир. Б. состоит из двух стабильных изотопов- В (19,57%) и В i80,43%). Поперечное сечение захвата тепловых нейтронов В 3-10 м "В 4-10 м1 Конфигурация внеш. электронной оболочки 2s 2p степень окисления + 3, редко + 2 энергия ионизации при последоват. переходе от B к В соотв. 8,29811, 25,156, 37,92, 259,30 и 340,13 эВ атомный радиус 0,097 нм, ковалентный 0,088 нм, металлический 0,091 нм, ионный В 0,025 нм (координац. число 4). [c.299]

    БРОМ (от греч. bromos-зловоние название связано с неприятным запахом Б. лат. Bromum) Вг, хим. элемент VII гр. периодич. системы, ат. н. 35, ат. м. 79,904 относится к галогенам. Прир. Б. состоит из стабильных изотопов Вг (50,56%) и Вг (49,44%). Конфигурация внеш. электронной оболочки 4s 4p степени окисления — 1 (бромиды), + 1 (гипобромиты), -I- 3 (бромиты), + 5 (броматы) и + 7 (пер-броматы) энергия ионизации при последоват. переходе от Br до Вг -" соотв. 11,84, 21,80, 35,90, 47,3, 59,7, 88,6, 109,0, 192,8 эВ электроотрицательность по Полингу 2,8 атомный радиус 0,119 нм, ионные радиусы Вг" (6), Вг (4), Вг (3), Вг (6), Вг + (4) соотв. 0,182, 0,073, 0,045, 0,053, 0,039 нм (в скобках указано координац. число). [c.318]

    ВАНАДИЕВЫЕ БРОНЗЫ, см. Бронзы оксидные. ВАНАДИЙ (от имени др.-сканд. богини красоты Ванадис, Vanadis лат. Vanadium) V, хим. элемент V гр. периодич. системы, ат. н. 23, ат. м. 50,9415. Прир. В. состоит из стабильного изотопа (99,76%) и слабо радиоактивного (Г, 2 10 лет). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 4,98 10 м . Конфигурация внеш. электронной оболочки 3d 4s степень окисления от -1-2 до -1-5 энергия (эВ) ионизации при последоват. переходе от V к соотв. 6,74, 14,65, 29,31, 48,4, 65,2 электроотрицательность по Полингу 1,6 атомный радиус 0,134 нм, ионные радиусы (в скобках-координац. числа В.) V 0,093 нм (6), 0,078 нм (6), У 0,067 (5), 0,072 (6) и 0,086 нм (8), 0,050 (4), 0,060 (5) и 0,068 нм (6). [c.348]

    ВОЛЬФРАМ [от нем. Wolf-волк, Rahm-сливки ( волчья пена -назв. дано в 16 в., т.к. мешал выплавке олова, переводя его в шлак) лат. Wolframium] W, хим. элемент VI гр. периодич. системы, ат. н. 74, ат. м. 183,85. Прир. В. состоит из пяти стабильных изотопов с мае. ч. 180 (0,135%), 182 (26,41%), 183 (14,4%), 184 (30,64%) и 186 (28,41%). Поперечное сеченне захвата тепловых нейтронов 19,2 10 м . Конфигурация внеш. электронной оболочки 5d 6s -, степени окисления + 2i -1-3, +4, -Ь5, +6 (наиб, характерна) энер- [c.418]

    ГАФНИЙ (от лат. Hafnia-Копенгаген лат. Hafnium) Hf, хим. элемент IV гр. периодич. системы, ат. н. 72, ат. м. 178,49. Прир. Г. состоит из 6 изотопов с мае. ч. 174 (0,18-0,20%), 176 (5,15-5,30%), 177 (18,39-18,55%), 178 (27,08-27,23%), 179 (13,73-13,84%), 180 (35,07-35,44%). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 105 10 м . Конфигурация внеш. электронной оболочки 5d 6s степень окисления +4, редко -1-3, -Ь 2 энергия ионизации Hf° Hf -> Hf соотв. 723 и 1437 кДж/моль злектроотрицательность по Полингу 1,6 атомный радиус 0,159 нм, ионный радиус НГ 0,082 нм (координац. число 6). [c.504]

    ГЕРМАНИЙ (от лат. Oermania-Германия, в честь родины К. А. Винклера лат. Germanium), Ge, хим. элемент IV гр. периодич. системы, ат. и. 32, ат. м. 72,59. Прир. Г. состоит из четырех стабильных изотопов с мае. ч. 70 (20,52%), 72 (27,43%), 73 (7,76%), 74 (36,54%) и 76 (7,76%). Поперечное сечение захвата тепловых нейтронов 2,35-10" м . Конфигурация внеш. электронной оболочки 4i 4p степень окисления -I- 4 (наиб, устойчива), +3, +2 и + энергия ионизации при последоват. переходе от Ge к Ge соотв. 7,900, 15,9348, 34,22, 45,70 эВ электроотрицательность по Полингу 1,8 атомный радиус 0,139 нм, ионный радиус (в скобках указаны координац. числа) для Ge 0,087 нм (6 для Ge - а053 нм(4), 0,067 нм(б). [c.530]

    ЗОЛОТО (Aurum) Au, хим. элемент 1 гр. периодич. системы, ат. и. 79, ат. м. 196,9665 относится к благородным металлам. В природе один стабильный изотоп Au. Конфигурация внеш. электронной оболочки 5d °6s степени окисления + 1. [c.171]

    ИТТЕРБИЙ (от назв. селения Иттербю, Ytterby в Швеции лат. Ytterbium) Yb, хим. элемент III гр, периодич. системы, ат. н, 70, ат. м. 173,04 относится к редкоземельным элементам (иттриевая подгруппа). Прир, И. состоит из 7 стабильных изотопов Yb (0,14%), Yb (3,03%), Yb (14,31%), i Yb (21,82%), Yb (16,13%), i Yb (31,84%) и Yb (12,73%). Конфигурация внеш. электронных оболочек 4/ 5i 5p 6i степени окисления -1-3 и - -2 энергия ионизации при последоват. переходе от Yb к Yb соотв, 6,2539, 12,17 и 25,50 эВ атомный радиус 0,193 нм, ионный радиус (в скобках указаны координац. числа) Yb 0,101 нм (6), 0,107 нм (7), 0,113 нм (8), 0,118 нм (9), Yb 0,116 нм (6), 0,122 нм (7), 0,128 нм (8). [c.276]

    КАЛИЙ (от араб, аль-кали - поташ лат. Kalium) К, хим. элемент I гр. периодич. системы относится к щелочным металлам, ат. и. 19 ат. м. 39,0983. Состоит из двух стабильных изотопов К (93,259%) и К (6,729%), а также радиоактивного изотопа К 1,32-10 лет). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 1,97-10 м . Конфигурация внеш. электронной оболочки 4i степень окисления + 1 энергия ионизации К - соотв. 4,34070 эВ и 31,8196 эВ сродство к электрону 0,47 эВ злектроотрицательность по Полингу 0,8 атомный радиус 0,2313 нм, ионный радиус (в скобках указано координац. число) К 0,151 нм (4), 0,152 нм (6), 0,160 нм (7), 0,165 нм (8), 0,178 нм (12). [c.284]

    КАЛЬЦИЕВАЯ СЕЛИТРА, то же, что кальция нитрат. КАЛЬЦИЙ (от лат. alx, род. падеж al is-известь лат. al mm), Са, хим. элемент II гр. периодич. системы, относится к щелочноземельным элементам, ат. н. 20, ат. м. 40,08. Прир. К. состоит из шести стабильных изотопов - Са (96,94%), - Са (2,09%), Са (0,667%), Са (0,187%), Са (0,135%) и " a (0,003%). Поперечные сечения (10 м ) захвата тепловых нейтронов изотопов с мае. ч. 40, 42, 44, 46 и 48 равны соотв. 0,22, 40, 0,63, 0,25 и 1,1. Конфигурация внеш. электронной оболочки 4s степень окисления +2, очень редко +1 энергии ионизации Са - Са - Са соотв. равны 6,11308 и 11,8714 эВ электроотрицательиость по Полингу 1,0 атомный радиус 0,197 нм, ионный радиус (в скобках указано координац. число) Са 0,114 нм (6), 0,126 нм (8), 0,137 нм (10), 0,148 нм (12). [c.293]

    КИСЛОРОД (лат Oxygenшm, от греч. охув кислый и gennao - рождаю) О, хим. элемент VI гр. периодич. системы, ат. н. 8, ат. м. 15,9994. Прир. К. состоит из трех стабильных изотопов (99,759%), (0,037%) и (0,204%). Конфигурация внеш. электронной оболочки атома 2з 2р энергии ионизации 0 - 0 - 0 " равны соотв. 13,61819, 35, 18 эВ электроотрицательиость по Полингу 3,5 (наиб, электроотрицат. элемент после Р) сродство к электрону 1,467 эВ ковалентный радиус 0,066 нм. [c.387]

    КОБАЛЬТ (от исм Kobold домовой, гном, лат obaltum) Со, хим эте (ен1 VHI гр периодич системы ат н 27 ат м 58,9332 Прир К состоит из двух изотопов- Со (99,83%) и Со (0,17 /о) Конфигурация внеш электронных оболочек Ър ЪсР 4i степень окисления -и 2 и -)-3, редко +1, +4п -1-5, энергии ионизации при последоват переходе от Со к Со соотв 7,866 I 0э7 и 33,50 эВ, сродство к электрону 0,94 эВ, электроотрнпатстьпость по Полингу 1,9, ат радиус 0,125 нм, ионный рад 1 1. (координац число 6) 0 079 нм для Со , 0,069 нм для Со н 0 067 для Со "  [c.414]

    КРЕМНИЙ (Sili ium) Si, химический элемент IV ф. периодич. системы, ат. н. 14, ат. м. 28,0855. Состоит из трех стабильных изотопов Si (92,27%), Si (4,68%) и Si (3,05%). Поперечное сечение захвата тепловых нейтронов 1,3 10 м . Конфигурация внещ. электронной оболочки 3i 3p степень окисления +4 (наиб, устойчива), +3, +2 и + 1 энергии ионизации при последоват. переходе от Si к Si соотв. 8,1517, 16,342, 33,46 и 45,13 эН сродство к электрону 1,22 эВ злектроотрицательность по Полингу 1,8 атомный радиус 0,133, ионный радиус Si (в скобках указаны координац. числа) 0,040 нм (4), 0,054 нм (6), ковалентный-0,1175 нм. [c.508]

    КУРЧАТ0ВИЙ (Kur hatovium) Ки, искусств, радиоактивный ХИМ. элемент IV гр. периодич, системы, ат. н. 104 первый элемент третьей переходной серии. Стабильных изотопов не имеет. Известно 10 изотопов с мае. ч. 253-262. Наиб, лолгоживущий изотоп Ки (Г,, 1,1 мин, а-излучатель). Конфигурация внеш. электронных оболочек атома 5j 6.s 6p (>d-7s степень окисления -(- 4, [c.558]


Смотреть страницы где упоминается термин Конфигурации атомов электронные: [c.548]    [c.548]    [c.502]    [c.265]    [c.194]    [c.479]    [c.590]    [c.126]    [c.226]    [c.251]    [c.272]    [c.277]   
Физика и химия твердого состояния (1978) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Актиноиды электронные конфигурации атомов

Бериллий электронная конфигурация атом

Гелий электронная конфигурация атома

Квантовые числа и электронные конфигурации атомов. Принцип Паули

Квантовые числа. Энергии и конфигурации электронных орбиталей атома

Конфигурации для атомов с неподеленными электронными парами

Конфигурация атомов

Конфигурация электронная многоэлектронного атома

Лантаноиды электронные конфигурации атомов

Литий, электронная конфигурация атома

Образование связи в водородной молекуле. Электронные конфигурации атомов элементов I и II периодов периодической системы Возбуждение валентности и гибридизация электронов. Q-связн

ПЕРИОДИЧЕСКИЙ ЗАКОН МЕНДЕЛЕЕВА. СТРОЕНИЕ АТОМА. ЭЛЕКТРОННЫЕ КОНФИГУРАЦИИ АТОМОВ АТОМНОЕ ЯДРО

Принципы заполнения орбиталей электронами - 36. Распределение электронов по уровням и подуровням у элементов I—IV периодов - 38. Электронная конфигурация атома химического элемента и его положение в Периодической системе

Пространственная конфигурация атома углерода,. имеющего один неспаренный электрон

Распределение электронов в атомах по квантовым уровням (слоям) и подуровням (подслоям). (Электронные конфигурации свободных атомов в нормальном состоянии)

СТРОЕНИЕ АТОМА. ЭЛЕКТРОННЫЕ КОНФИГУРАЦИИ АТОМОВ. АТОМНОЕ ЯДРО

Строение атома. Электронные конфигурации атомов. Атомное ядро. Периодический закон и периодическая система элементов Д.И.Менделеева

Строение электронной оболочки атома. Заполнение орбиталей электронами. Электронные конфигурации атомов элементов I—IV периодов

Таблица Б. Конфигурации электронных оболочек в атомах

Таблица электронных конфигураций атомов в основном состоянии

Углерод конфигурация, атома с неспаренным электроном

Углерод электронная конфигурация атом

Уран-атом электронные конфигурации

Фтор, электронная конфигурация атома

Электрон в атомах

Электрон конфигурации

Электронная конфигурация

Электронная конфигурация атома азота

Электронная конфигурация атома водорода

Электронные конфигурации атомов и периодическая система элементов

Электронные конфигурации атомов и попов

Электронные конфигурации атомов лантанидов и актинидов

Электронные конфигурации атомов оболочки и подоболочки

Электронные конфигурации атомов таблица

Электронные конфигурации атомов щелочноземельных элементов

Электронные конфигурации атомов элементов

Электронные конфигурации атомов элементов от водорода до криптона

Электронные конфигурации атомов. Потенциалы ионизации и сродство к электрону

Электронные конфигурации и основные состояния свободных атомов и их ионов

Электронные конфигурации и свойства гомонуклеарных молекул, образованных атомами 2-го периода

Электронные конфигурации и свойства гомонуклеарных молекул, образованных атомами элементов второго периода

Электронные конфигурации основного состояния ряда атомов

Элементы переходные электронные конфигурации атомов



© 2025 chem21.info Реклама на сайте