Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость транспорта

    Индикатором характера процесса служит влияние на него температуры. Дело в том, что энергия активации диффузионных процессов Е 30 кДж) гораздо меньше энергии активации химического взаимодействия Е 5 40 кДж). Следовательно, константа скорости химической реакции гораздо чувствительнее к изменению температуры, чем коэффициент диффузии. Действительно, если на каждый градус скорость взаимодействия изменяется на 10—30%, то скорость транспорта веществ изменяется всего лишь на 1—3%. Поэтому понижение температуры нередко приводит к смещению процесса из диффузионной области в кинетическую. [c.154]


    Скорость процесса адсорбции определяется пе скоростью собственно адсорбции, которая протекает очень быстро, а скоростью подвода молекул из объема к поверхности зерен адсорбента и скоростью транспорта молекул с поверхности зерна к центру его по многочисленным порам. Эти процессы определяются скоростью диффузии молекул. [c.260]

    Скорость химического превращения определяется скоростью транспорта вещества и теплоты к зоне реакции и скоростью реакции. Химические реакции могут протекать в объеме реакционной среды (гомогенные реакции) либо на поверхности раздела фаз (гетерогенные реакции). [c.259]

    Процессы массо- и теплообмена, сопровождаемые химической реакцией, могут протекать в диффузионной, кинетической или промежуточной областях. В диффузионной области процесс лимитируется скоростью транспорта теплоты и вещества в зоне реакции и реализуется при больших скоростях химической реакции. Наоборот, процесс, протекающий в кинетической области, лимитируется скоростью химической реакции и реализуется при больших скоростях транспорта теплоты и вещества к зоне реакции. [c.259]

    При анализе рассмотренного вьппе процесса массообмена с быстропротекающей химической реакцией важную роль играет параметр (i. Он количественно характеризует роль диффузионного сопротивления каждой из фаз, и в зависимости от его величины можно рассматривать случаи, когда сопротивление переносу сосредоточено как в дисперсной фазе, где протекает реакция, так и в сплошной. На рис. 6.10 - 6.13 приведены примеры расчетов, когда сопротивление переносу сосредоточено в объеме одной из фаз, а также общий случай соизмеримых фазовых сопротивлений. Заметим, что дпя любого (3 рост параметров man способствует повьпиению скорости транспорта хемосорбента к поверхности капли, а рост т, кроме того, приводит к повьпиению химической емкости, что обусловливает возрастание времени Ti, определяющего начальный временной интервал, в котором реакция протекает на поверхности капли. Величина ti существенно зависит от /3. Так, при больших 3, когда сопротивление переносу сосредоточено в сплошной фазе, значение Tj особенно велико.. Это ясно как из зависимости для отношения потоков (см. рис. 6.13), так и из графиков дпя средних концентраций (рис. 6.10), где о движении фронта реакции можно судить по величине i внутри капли. В течение времени т,, когда реакция протекает на поверхности, экстрагент в каплю не поступает и концентрация С, =0. [c.282]


    Понятно, что увеличение линейных скоростей газового потока и применение мелкозернистого катализатора, а также снижение температуры процесса будет способствовать относительному увеличению скорости транспорта и, следовательно, переходу реак- [c.268]

    Вообще вынужденный поток будет сказываться лишь тогда, когда движение идет в больших порах. В случае, например, кнудсеновского режима диффузии даже существенное увеличение давления внутри гранулы (более чем на 1 атм) не отразится на скорости транспорта. Для реакции А дВ оно равно  [c.271]

    Так, был разработан новый аппарат с прямотоком жидкости (рис. 4.8), в котором прямоток жидкости на смежных ситчатых тарелках осуществлялся с помощью наклонного переливного устройства с клапанами, ориентированными в сторону слива. При этом горизонтальная составляющая кинетической энергии парового потока в переливном устройстве способствует росту скорости транспорта жидкости с тарелки на тарелку, значительно превышающую скорость жидкости на горизонтальных тарелках. Кроме того, в этом случае переливная тарелка играет роль отбойного устройства, что позволяет увеличить скорость пара в сечении тарелки с минимальным уносом. Были проведены исследования на системе воздух - вода в аппаратах диаметром 700, 1000 и 3000 мм. Цель исследований заключалась в определении зависимости параметров математической модели массопередачи (Ре, 4,) от гидродинамических условий на тарелке. Эти параметры использовались в дальнейшем для расчета числа ситчатых тарелок, снабженных клапанным переливным устройством. [c.201]

    Таким образом, расположение кольцевых желобов ниже плоскости тарелок позволит увеличить поверхность контакта фаз за счет роста свободного сечения, что обусловит также дополнительное возрастание производительности аппарата. Расчет и выполнение кольцевого желоба по формулам (4.22) позволит обеспечить максимальную скорость транспорта жидкости в желобе и, как следствие, - увеличить производительность аппарата по жидкости и пару без снижения эффективности массообмена. [c.207]

    М (на катоде), М+ ге (на аноде) и изменению концентрации ионов в приэлектродных слоях электролита. Это изменение связано с отставанием скорости транспорта потенциалопределяющих веществ от скорости электродного процесса, которое наблюдается до установления стационарного состояния. При подаче тока на катоде идет разряд катионов с постоянной скоростью обусловленной заданной плотностью тока, и их концентрация около электрода уменьшается. Транспорт катионов к катоду осуществляется миграцией, скорость которой в данном электрическом поле постоянна, и диффузией, скорость которой с течением времени изменяется. Вначале она будет малой, так как разность между концентрацией ионов у электрода и в массе электролита очень мала. При этом Од С течением времени концентрация катионов у электрода уменьшается (за счет электродного процесса), а скорость диффузии возрастает. При достижении стационарного состояния скорость транспорта ионов к электроду и скорость их разряда становятся одинаковыми, однако концентрация их у катода будет меньше, чем в массе электролита. Аналогичным путем можно показать, что при пропускании тока через систему (I) концентрация катионов у анода повышается по сравнению с их концентрацией в массе раствора. Таким образом, под током система (I) переходит в новое состояние, в котором с > с > с  [c.500]

    Наиболее часто в исследованиях используют различные модификации модели послойного горения [145-148, 151]. При обосновании выбора такой модели обычно исходят из следующих предпосылок [75, 147]. При достаточно высокой температуре скорость горения кокса начинает тормозиться скоростью транспорта кислорода к поверхности окисления. В случае сферического зерна реакция протекает исключительно по сферической границе раздела, которая непрерывно перемещается по направлению к центру зерна. При этом суммарная скорость реакции лимитируется скоростью диффузии кислорода через освободившиеся от кокса поры зерна в зону химической реакции. В этой зоне кислород полностью расходуется, и дальнейшей диффузии к центру зерна не происходит. В работе [23] приведены многие экспериментальные данные, качественно иллюстрирующие описанный выше характер удаления кокса. Однако регенерацию закоксованных катализаторов не всегда проводят во внутридиффузионном режиме. Иногда для предотвращения возможных перегревов процесс рекомендуют начинать при низких начальных концентрациях кислорода [75, 147, 149]. В таких условиях процесс протекает практически в кинетической области, поэтому скорость удаления кокса примерно одинакова в любой точке по радиусу зерна. Понятно, что подобную закономерность выжига кокса модель послойного горения воспроизвести не может. [c.71]


    С помощью вакуумной пневмотранспортной установки на одном из нефтеперерабатывающих заводов перемещали катализатор-пудру с приведенными выше физико-техническими показателями. Диаметр воздуховода в свету составлял 207 мм рабочая концентрация смеси поддерживалась на уровне 3,72 кг/кг, скорость трогания для материала составляла 7,8 м/сек-, скорость транспорт- [c.174]

    Действительно, явления, наблюдаемые на разгонном участке, могут обосновать меньшую зависимость/( от скорости транспорта, чем на участках стабильного транспортирования, а также влияние концентрации, которая в самом начале разгонного участка весьма велика (теоретически — стремится к бесконечности). [c.174]

    Скорость транспорта вещества через диффузионный слой от границы раздела в жидкость  [c.218]

    В гомогенных системах реакция идет во всем реакционном объеме, так как мы называем гомогенной именно систему, имеющую одинаковый химический состав во всех ее участках. В гетерогенных системах химический состав фаз различен, и реакция осуществляется на границе раздела фаз. Поэтому кинетика взаимодействия определяется не только кинетикой собственно химической реакции — кинетикой образования нового вещества, но и скоростью транспорта реагентов в зону реакции и сквозь зону. Этот транспорт осуществляется путем диффузии вещества как внутри объема контактирующих фаз, так и сквозь слой образующегося вещества. [c.227]

    Число распадающихся в единицу времени зародышей должно быть пропорционально их концентрации и скорости транспорта молекул от зародыша в жидкости (и). Поэтому [c.502]

    Первый закон Фика. Хотя статистическое толкование диффузии дает наглядное представление о природе ее, все же первой детерминистической формулировкой скорости диффузии является закон Фика. По аналогии с тепловым потоком Фик установил, что при данной температуре и давлении возникающая скорость транспорта пропорциональна только градиенту концентраций. Если q — диффузионный поток, т. е. скорость транспорта массы вещества на единицу площади, и d /dz — градиент концентраций, то для однонаправленного потока справедливо уравнение [c.193]

    Согласно развиваемому системному подходу к анализу сложной совокупности процессов на микро- и макроуровнях, к эффектам, определяющим поведение системы на макроуровне, относится массопередача. Массообменные процессы в биореакторе непосредственно влияют на рост микроорганизмов, определяя скорость транспорта питательных веществ к клеткам и отвод продуктов метаболизма в среду в количестве, соответствующем стехиометрическим коэффициентам. Наибольший практический интерес, с точки зрения ограничения скорости процесса ферментации, представляют такие элементы питания, как кислород и углеродсодержащий субстрат, учитывая большую удельную потребность в них клеток, низкую растворимость в культуральной жидкости и присутствие в ферментационной среде в виде дисперсных фаз. [c.87]

    Безразмерные константы, входящие в данные уравнения, определяют относительную скорость транспорта кислорода [c.159]

    Второй класс автоколебательных систем характеризуется тем, что автоколебания в них существенно зависят от скорости подачи исходных реагирующих веществ в реактор. В этом случае колебательное поведение системы обусловливается соотношением скоростей транспорта реагирующих веществ в реактор и собственно химической реакцией. Для описания динамического поведения реактора идеального смешения наряду с системой уравнений типа (7.18), описывающей протекание процессов на элементе поверхности, необходимо рассматривать уравнения, описывающие изменения концентраций реагирующих веществ в газовой фазе [116, 131]. Взаимодействие реакции, скорость которой нелинейна, с процессами подачи реагирующих веществ в реактор идеального смешения обусловливает при определенных значениях параметров возникновение нескольких стационарных состояний в режимах работы реактора. При наличии обратимой адсорбции инертного вещества (буфера) в системе возможны автоколебания скорости реакции. При этом на поверхности сохраняется единственное стационарное состояние, и автоколебания обусловлены взаимодействием нелинейной реакции и процессов подвода реагирующих веществ в реактор. [c.319]

    Зная скорость транспорта, находят эквивалентный ей диаметр зоны 2 [c.27]

    Зная скорость транспорта по формуле (2.46), найдем эквивалентный ей диаметр [c.37]

    Как показывает табл. 3-10, цеолиты без связующего по физическим свойствам близки к обычным цеолитам, но превосходят их по механической прочности. Наличие активной поверхности вторичных нор позволяет значительно увеличить скорость транспорта молекул адсорбата к микропорам. Благодаря этому цеолиты без связующего преимущественно применяются в некоторых технологических процессах, в первую очередь при осушке жидкостей (см. стр. 391), [c.123]

    Различие в скоростях адсорбции воды цеолитами со связующим и без него связано с разным характером диффузионного потока. В случае, если поверхность вторичных пор образована инертным материалом, скорость транспорта к микропорам, сосредоточенным в кристаллах цеолитов, определяется мало интенсивной объемной диффузией. В цеолитах без связующего ускорение транспорта адсорбата (влаги) обусловлено поверхностной диффузией его молекул по адсорбционно активной гидрофильной поверхности вторичных пор, образованных сростками кристаллов цеолитов. [c.391]

    Общая скорость процесса определяется скоростью создания пересыщения, а также скоростью транспорта вещества к растущей поверхности, т. е. эффективной диффузией [1, 3]. Физико-химические особенности кристаллизации из растворов (значения термодинамических потенциалов, активности и др,) при инженерных расчетах процессов в КС обычно не используются. Пересыщение АС — это положительная разность концентрации С растворенного вещества и зависящей от температуры равновесной концентрации Ср (растворимости), В обычно (в стационарном процессе) используемом достаточно узком температурном интервале  [c.315]

    Кинетика взаимодействия стеариновой кислоты с порошкообразным оксидом кальция Для быстрых реакций скорость процесса лимитируется процессами транспорта молекул предельно возможную скорость быстрой реакции можно рассчитывать как возможную скорость транспорта. [c.12]

    Поскольку в расплавах, в двухфазных гетерогенных системах транспорт реагирующих молекул осуществляется посредством диффузии, то на основе закона Фика, используя уравнение Стока-Эйнштейна, учитывая механизм диффузии в жидкости и расплавах, рассчитав деформацию химической связи при образовании активированного комплекса и вязкость реакционной массы, были рассчитаны скорости транспорта реагентов при различных температурах по формуле  [c.12]

    Учитывая отмечшные выше гидродинамические факторы, влияющие на эффективность внешнего массопереноса в двухфазном потоке, следует также обращать внимание на сопротивление массопереносу внутри пор катализатора. Этот фактор заметно возрастает с утяжелением сырья и может быть определяющим при оценке эффективности процесса. Скорости транспорта водорода или, например, серусодержащих молекул в порах, заполненных жидкостью, могут быть сравнительно ниже, чем истинная (поверхностная) скорость реакции. Эти явления могут быть оценены яа основе принципов диффузионной кинетики, т. е. исходя нэ [c.93]

    Лимитирующим сопротивлением в этом случае является сопротивление диффузионного слоя, хотя скорость транспорта вещества равна скорости химической реакции. При изменение константы скорости химической реакции в пределах вьтолнения неравенства (6.7) скорость реакции не изменяется, а концентрация вещества на поверхности твердого тела s( s< q) подстраивается к вьшолнению условия ki s< K o = = onst. [c.260]

    Классический анализ химических процессов в пористом эерне. основан на учете равенства скоростей транспорта (диффузии) и реакции. [c.23]

    Если гетерогенная реакция протекает во внепшеднффу-зионной области, т. е. ее скорость определяется скоростью транспорта к контактной поверхности, то концентрации и температура у поверхности (С з, Тв) будут отличны от тех же величин в потоке (С , Г). В этом случае изменение переменных определяется скоростями переноса веш ества и тепла (см. гл. VIII), например [c.74]

    Как видно из (1.63), (1.64), по сравнению с перекрестными эффектами, развивающимися в однофазных системах [42] (например, эффекты Соре, Дюфура и др.), в случае многофазных многокомпонентных систем (с химическими реакциями, фазовыми превращениями, тепло- и массообменом), подчиняющихся модели взаимопроникающих континуумов, спектр перекрестных эффектов значительно расширяется. Так, на величину диффузионных и тепловых потоков в пределах фазы оказывает влияние относительное движение фаз (коэффициенты ап зи > / 2п+зд)- Поток тепла 5,12) между фазами определяется не только разностью температур фаз, но и движущими силами межфазного переноса массы (коэффициенты i,2jv+2.....2Л42П+1) и химических превращений (коэффициенты, 121 > 2jv+i). Скорость транспорта вещества к-то компонента между фазами определяется прежде всего движущей силой межфазного массопереноса, состоящей из трех частей разности потенциалов Планка (V-ik [c.59]

    На рис. 3.5 показаны зависимости степени конверсии мономера г[= сд—с) сд от времени реакции при различных начальных размерах капель мономера или, иначе говоря, при различных значениях безразмерного параметра о= 1/ р ю характеризующего соотношение между скоростью транспорта молекул мономера к поверхности частицы и скорость химической реакции. С уменьшением размера капель мономера увеличивается параметр о, что влечет за собой увеличение скорости транспорта молекул мономера в водной фазе и повышение скорости полимеризации. Отсюда следует важный вывод скорость эмульсионной полиыери- [c.158]

    Реакции поликонденсации очень медленно протекают при обычной температуре, и поэтому синтез конденсационных полимеров ведут обычно при температурах порядка 150—300° С и даже выше, т. е. температурный режим синтеза является одним из макрокине-тических факторов, влияющих на процесс синтеза. Поликонденсация может быть гетерофазной, например эмульсионной. Эмульсионным может быть также процесс полимеризации, при котором радикальная полимеризация протекает в эмульсии мономера [32], причем реакционная масса в этом случае имеет невысокую вязкость. При эмульсионном процессе синтеза существенное влияние оказывают такие показатели, как размер капель мономера и скорость транспорта мономера к поверхности раздела фаз [46]. Тем самым гидродинамический режим синтеза также является макрокинети ческим фактором, влияющим на процесс синтеза. [c.5]

    При транспортировании глинозема в пневмопроводе 012 мм, при том же отношении б скорости транспортного воздуха к скорости трогания, равном 2,6 (скорость транспорта 15 м1сек скорость трогания м1сек) и при [х = 1,0, по графику рис. 69 [c.172]

    Рассмотрим на примере кислорода основные этапы его транспорта к клеткам. К основным переходам, сопротивление которых оказывает влияние на скорость транспорта кислорода, относятся сопротивление пограничной газовой пленки сопротивление на границе раздела газ—жидкость сопротивление жидкостенной пленки сопротивление транспорту кислорода в жидкости сопротивление жидкостной пленки на границе раздела жидкость— клетка илн жидкость—агломерат. [c.87]

    Рассмотрим далее пример модели колонного биореактора, описываемого диффузионной моделью, с учетом лимитирующего влияния на процесс ферментации концентрации растворенного кислорода. В этом случае на характер распределения рабочей концентрации кислорода в бпореакторе колонного типа оказывают влияние структура жидкостного и газового потоков, скорость транспорта кислорода из газа в жидкость, скорость утилизации кнсло- [c.158]

    Экспериментально установлено, что при низких концентрациях растворенного кислорода (менее 1... 2 мг/л) состояние активного ила и качество очистки ухудщаются, что связано, видимо, с недостатком кислорода для клеток, находящихся внутри хлопьев. Согласно данным работы [9] скорость и глубина утилизации органических загрязнений активным илом определяется скоростью транспорта кислорода II его концентрацией в растворе. При этом коэффициент скорости окисления субстрата выражается зависимостью [c.224]

    Для проведения следующей части работы на полярографе подбирают максимальную концентрацию Са +, добавление которого к митохондриям в среде с сукцинатом вызывает обратимую активацию дыхания. Для прочносопряженных митохондрий печени крысы (4—5 мг белка в пробе) это составляет около 200—400 мкМ Са +. Дальнейшие измерения проводят на регистрирующем рН-метре. В ячейку рН-метра со средой инкубации и погруженными электродами добавляют последовательно митохондрии, сукцинат и выбранную концентрацию Са +. Регистрируют быстрое освобождение ионов Н+ (закисление среды) из матрикса в ответ на добавление Са +. После аккумуляции всего добавленного Са + изменения pH среды прекратятся и на фоне нового стационарного значения pH в суспензии добавляют 1—2 раза одинаковое количество титрованной НС1 или КОН для калибровки шкалы (конечная концентрация НС1 или КОН в используемых условиях должна составлять около IO М). Проводят серию аналогичных проб, содержащих увеличивающиеся концентрации ДНФ, и каждый раз регистрируют скорость закисления среды в процессе активного транспорта Са2+. Для полного торможения транспорта Са + в митохондриях диапазон концентрации ДНФ должен быть значительно (в 2—3 раза) расширен по сравнению с опытами по измерению сукцинатоксидазной активности. Делают 5—6 измерений и строят графическую зависимость скорости транспорта Са + от концентрации разобщителя (5—6 экспериментальных точек). [c.470]

    При хроматографическом разделении смесь вещестн в подвижной фазе транспортируется через стационарно закрепленную (неподвижную) фазу. При этом компоненты смеси из-за различий в строении, растворимости, полярности или заряде вступают в специфическое взаимодействие с неподвижной фазой, которое обусловливает различные скорости транспорта компонентов. [c.55]

    Рнс. 25.3,6. Зависимость текучести бислоя (о) и скорости транспорта -глюко-зида (б) от температуры для внутренней мембраны мутантов Е. соИ, выращиваемых на среде с добавкой линолевой кислоты [23] [c.119]

    Биологические мембраны, состоящие из сложных смесей различных классов липидов с разными алкильными цепями, при физиологических температурах находятся, по-видимому, в состоянии латерального разделения фаз. Высокая способность к латеральному сжатию, обусловленная одновременным существованием твердой и жидкой фазы, может влиять на активность находящихся внутри мембраны ферментов, что позволяет включаться в мембрану новым компонентам и сказывается на процессах транспорта. Исследованы [23] свойства мембран клеток мутантных щтаммов Е. oli, для роста которых необходимо наличие жирных кислот состав их внутренней мембраны может быть обогащен определенными алкильными цепями путем прибавления к питательной среде соответствующих жирных кислот. Изменение текучести бислоя и скорости транспорта -глюкозида для внутренней мембраны соИ, выращиваемой на среде с добавкой линолевой кислоты, в зависимости от температуры показано на рис. 25.3.6. Точки перегиба на графике Аррениуса соответствуют экстремумам латерального разделения фаз. Наблюдается также изменение энергии эктивации транспорта, которое приблизительно коррелирует с гра- [c.119]


Смотреть страницы где упоминается термин Скорость транспорта: [c.21]    [c.143]    [c.500]    [c.94]    [c.110]    [c.215]    [c.398]   
Введение в мембранную технологию (1999) -- [ c.257 , c.319 , c.320 , c.328 , c.333 , c.335 , c.340 , c.343 , c.359 , c.362 ]




ПОИСК







© 2024 chem21.info Реклама на сайте