Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипропилен механическая обработка

    Полиэтилен и полипропилен исключительно легко поддаются литью, легко свариваются методом контактной сварки (без применения присадочного материала) и сварки с присадочным прутком, изготовленным из того же материала. Их можно подвергать всем видам механической обработки. [c.28]

    Полипропилен легко поддается механической обработке на обычных металлообрабатывающих станках. Режущий инструмент должен быть довольно острым, перегрева необходимо избегать эти проблемы не создают, однако, таких затруднений, как у других термопластов. Это очень удобный способ изготовления моделей отдельных образцов или деталей при несерийном производстве. [c.169]


    Полиэтилен и полипропилен перерабатываются всеми методами, характерными для переработки термопластов экструзией (выдавливанием), выдуванием и литьем под давлением. Значительная доля полиэтилена перерабатывается в пленки, листы и профильно погонажные изделия (например, трубы), а они, в свою очередь, могут подвергаться переработке в изделия методами вакуум- и пневмоформования с предварительным подогревом, термосвариванием и механической обработкой (см. гл. XXI) [c.62]

    Еще больший интерес представляет полипропилен, обладающий многими положительными качествами, присущими полиэтилену. Это объясняется значительно большим средним молекулярным весом полипропилена и большей степенью его кристалличности по сравнению с полиэтиленом. В отличие от полиэтилена, полипропилен меньше подвержен окислительной деструкции при обычной температуре он обладает незначительной хладотекучестью и может, сохраняя форму, длительное время находиться под нагрузкой при 100 °С. Полиэтилен и полипропилен исключительно легко поддаются литью, хорошо свариваются методом контактной сварки ( без применения присадочного материала) и сварки с присадочным прутком, изготовленным из того же материала. Их можно подвергать всем видам механической обработки. [c.21]

    Полипропилен как конструктивный материал для рабочих рамок по герметичности зарекомендовал себя хорошо, однако он более трудно поддается механической обработке. [c.64]

    В зависимости от условий полимеризации и термической обработки большая или меньшая часть полимерного вещества переходит в кристаллическое состояние, поэтому обычно наряду с аморфной в полимере представлена в той или иной степени кристаллическая структура. К распространенным кристаллизующимся полимерам относятся полиолефины (полиэтилен, полипропилен), полиамиды (капрон) и полиэфиры (лавсан). При нагревании кристаллическая структура полимера нарушается, и он переходит в аморфное состояние. Механическая прочность кристаллических полимеров значительно больше, чем аморфных. Например, прочность на разрыв аморфного полиэтилена 20—30, а кристаллического до 700 —1000 MH/м Волоконце полиэтилена длиной 7—10 см и толщиной 0,03—0,04 мм обладает прочностью до 4 ГН/м , в то время как прочность лучших сортов легированной стали около 2 ГН/м . Полиэтилен легче стали в 7—8 раз, поэтому при равной массе полимерное волокно окажется в 15—20 раз прочнее стали. [c.337]

    Атмосферостойкость полипропилена в условиях воздействия солнечного света и повышенной температуры должна быть признана недостаточной, так как в этих условиях полипропилен подвергается деструкции со значительным снижением физико-механических свойств. В целях предотвращения деструкции полипропилена при его термической обработке (нагреве и окислении) и при эксплуатации изделий (пленок, труб) необходимо введение в поли- [c.55]


    Полипропилен может обрабатываться на механических станках для обработки дерева и металла при скоростях более высоких, чем при работе с другими термопластами, ввиду лучшей теплостойкости материала. [c.57]

    Полиэтилен, полипропилен и полистирол — химически устойчивы, обладают высокими механической прочностью и диэлектрическими свойствами, водонепроницаемостью, легко поддаются обработке. [c.215]

    Полипропилен имеет низкую адгезию к металлу. Крепление полипропилена, армированного стеклотканью, к стенкам аппаратов производится с помощью эпоксидного клея, а швы провариваются. Так как тепловое расширение пластмасс выше, чем стали, пластмассовая футеровка после нескольких температурных циклов вспучивается и разрывается. В пластмассовых воздуховодах (из винипласта, полипропилена) под действием агрессивной среды разрушаются места сварки стыков. При ремонте швы защищаются двумя слоями стеклоткани, укладываемой с промазкой эпоксидной смолой. Фторопласт для защиты рабочих поверхностей оборудования от налипания продуктов наносится методом напыления в электростатическом поле. Клейка стеклопластика осуществляется смолой ПН-1, смешанной с отходами сте-кхожгута. Например, приклейка к трубе кольца под накидной фланец осуществляется следующим образом. Труба ставится торцом на гладкую поверхность, покрытую целлофаном. Кольцо устанавливается на этой же поверхности соосно с трубой. В зазор между трубой и кольцом заливается смола. Через 1,5—2,0 ч борт готов и не требует механической обработки. Пластмассовые (чаще всего фторопластовые) манжеты изготавливаются в пресс-форме. Пластмассовые детали машин и аппаратов при сборке (монтаже) иногда ломаются. Для исключения поломок детали целесообразно нагревать в горячей воде с температурой 90 °С. После нагрева детали становятся эластичными и легко монтируются. [c.179]

    Полипропилен относится к группе полиолефинов. Получают его полимеризацией пропилена в присутствии металлсодержащих катализаторов. Полипропилен характеризуется высокой кристалличностью и изотак-тическпм строением молекул, что и обусловливает его хорошую механическую прочность и высокую термостойкость. Морозостойкость немодифицирован ного полипропилена изменяется от —10 до -—15 С, а модифицированного — от —10 до —30 С. Полипропилен по механической прочности, химической стойкости, водостойкости и стойкости к воздействию нефти и нефтепродуктов превосходит полиэтилены. Хорошо поддается механической обработке, а также сварке нагретым воздухом или азотом при температуре 220—240 °С. При температуре 18—23 °С и при условии, что воздействие прямых солнечных лучей исключается, полипропилен устойчив к старению. Для предотвращения теплового старения в полипропилен вводят до 0,2 7о ароматических аминов, а для замедления светового старения — 0,3% технического углерода. [c.92]

    Диффузия стабилизатора в полимере относится к проблемам, требующим тщательного изучения. Следует отметить лишь немногие работы, в которых экспериментально исследовалось это явление. Коэффициент диффузии 2,6-ди-то/>ет-бутил-4-метилфенола был измерен в полипропилене и полиформальдегиде [236], а диффузию в полиэтилене высокого давления изучали, применяя стабилизаторы, меченные радиоактивными изотопами [645а]. При этом было показано, что коэффициент диффузии, очевидно, зависит от состояния полимера после термической и механической обработки. [c.106]

    Полиолефины, к которым кроме полиэтилена относятся полипропилен, полибутилен, сополимеры этилена, пропилена и другие полимеры, отличаются высокими диэлектрическими свойствами, эластичностью, химической стойкостью, сравнительно высокими физико-механическими свойствами и теплостойкостью, высокой морозостойкостью. Они применяются для изготовления изоляции проводов и кабелей, труб и фасонных деталей, шлангов, листов, нитей и жгутов, баллонов, тары, пленок, шестерен, деталей пылесосов и домашних холодильников, крупных емкостей для химической промышленности и др. Полиэтилен, как и большинство других термопластов, перерабатывают в готовые изделия преимущественно в виде расплавов. Меньшее значение имеют методы механической обработки и склеивания. В виде растворов или эмульсий полиэтилен почти не перерабатывают вследствие нерастворимости его в холодных растворителях. Наиболее распространены методы формования изделий из полиэтилена в виде расплавов литье под давлением, экструзия, интрузия и т. д. Применяются также методы ( рмования полиэтилена в размягченном состоянии вакуумное и пневматическое формование, штампование, вспенивание. Изделия из полиэтилена можно изготовлять несколькими методами. Например, полые изделия в одних [c.5]

    На рис, 37.11 показана зависимость механических свойств пленок полипропилена от структурного состава [55]. Из рисунка видно, что атактический полипропилен обладает свойствами аморфно-жидких полимеров для изотактического полипропилена характерны свойства высококристаллического полимера свойства стереоблокполимера занимают промежуточное положение. Таким образом, изменяя структурный состав изотактических полимеров, можно получить изделия с разными свойствами. На свойства кристаллических полимеров оказывает существенное влияние кристалличность. На рис. 37.12 представлены зависимости напряжения — удлинения полипропиленовых пленок, кристалличность которых изменялась во времени [56] при тепловой обработке (при 125 °С). Для исходного образца, который не подвергался тепловому воздействию, характерна высокая прочность и обра зование шейки. С увеличением продолжительности прогрева повышается хрупкость полимера. Микроскопические исследования этих пленок показали  [c.519]



Смотреть страницы где упоминается термин Полипропилен механическая обработка: [c.193]   
Энциклопедия полимеров Том 2 (1974) -- [ c.221 , c.222 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.221 , c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Полипропилен



© 2024 chem21.info Реклама на сайте