Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механические свойства вулканизованного, зависимость

    Вулканизация. Для придания резиновому покрытию химиче ской стойкости, прочности и эластичности его вулканизуют. В зависимости от марки резины или эбонита, принятого метода крепления резиновых обкладок к металлу вулканизацию осуществляют одним из следующих способов в вулканизационных котлах или гуммируемых аппаратах под давлением в гуммируемых аппаратах без давления (открытый способ). В качестве теплоносителя наибольшее применение находит насыщенный водяной пар, ценным свойством которого является строго определенная температура конденсации при данном давлении, выдерживаемая в течение всего процесса. Однако образующийся конденсат частично вымывает отдельные составляющие резиновой смеси, вследствие чего ухудшаются физико-механические свойства и химическая стойкость покрытия. При вулканизации горячим воздухом коррозионная стойкость и срок службы гуммировочного покрытия повышается на 20—25% по сравнению с вулканизацией насыщенным паром. Особенно это важно при эксплуатации резин и эбонитов в агрессивных средах при повышенной температуре. Режим вулканизации выбирается в зависимости от марки применяемой резиновой смеси и клея, толщины резинового покрытия и габаритов защищаемого оборудования. Например, гуммировочное покрытие на эбоните марки ГХ-1626 может вулканизоваться как под давлением, так и открытым способом. Применение эбонита марки ГХ-1627 возможно только при вулканизации под давлением (в котле или в аппарате). Его вулканизация открытым способом не позволяет достигнуть необходимой твердости и химической стойкости покрытия. [c.207]


    Выше мы кратко рассмотрели зависимость от молекулярной структуры эластомеров технологических свойств сажевых смесей и основных физико-механических свойств вулканизатов. Можно указать на ряд других свойств резин, имеющих важное значение при конструировании различных резино-технических изделий, такие как усталостная выносливость, ползучесть, остаточные деформации и др., улучшение которых связано с получением однородных материалов — однородных сеточных структур, что в свою очередь, опирается на внедрение каучуков с определенным молекулярным составом. Весьма существенным является также использование растворимых вулканизующих групп и интенсификация процессов смешения. [c.92]

    Не находит объяснения в рамках молекулярных моделей и широко известный факт сильной зависимости физико-механических свойств вулканизатов одного и того же образца каучука с одинаковой степенью сшивания от типа вулканизующей системы. Например, сопротивление разрыву НК, вулканизованного не Которы-ми системами сера — ускоритель, превышает 30 МПа, но составляет лишь 16,5 МПа при перекисной вулканизации. Очевидно, что столь сильное различие связано с особенностями вулканизационной структуры, и, в первую очередь, с типом возникающих поперечных связей и структурной или химической модификацией молекулярных цепей. [c.54]

    В зависимости от продолжительности вулканизации и количества вулканизующего агента образуется различное число химических связей между макромолекулами каучука и соответственно изменяется весь комплекс физико-механических свойств получаемой резины. Наименьшая продолжительность процесса вулканизации, при которой резина приобретает оптимальные свойства, носит название оптимума вулканизации. Дальнейшее увеличение продолжительности обработки (до известного предела, различного для разных типов резин) не приводит к увеличению числа химических межмолекулярных связей и. следовательно, не вызывает заметного изменения свойств вулканизата. Это дает возможность устанавливать различные режимы вулканизации применительно к типам перерабатываемых каучуков и получаемых изделий. Длительность периода вулканизации, в продолжение которого резина сохраняет оптимальные или близкие к оптимальным свойства, получила название плато вулканизации. [c.762]

    Из.менения основных физико-механических свойств резин в зависимости от температуры, времени вулканизации, состава вулканизующей системы и типа каучука описываются кривыми, имеющими экстремальные точки максимума и минимума. Эти кривые описывают наблюдаемое в процессе вулканизации улучшение одних свойств и ухудшение других. Наилучшие свойства резин достигаются в определенном интервале времени вулканизации (в так называемом оптимуме вулканизации) и зависят от характера пространственной вулканизационной структуры, которая в этих условиях возникает. [c.356]


    Сравнение значений для разных полимеров показывает, что увеличение химической стойкости и уменьшение долговечности приводят к увеличению Рс, так как при этом Д уменьшается, и наоборот, противоположное изменение этих параметров вызывает уменьшение Рс- В качестве примера можно рассмотреть поведение в соляной кислоте резин из СКС-ЗЭ-1, одна из которых вулканизована с помощью MgO, а другая с помощью серы (см. рис. 198). У серного вулканизата, кислотостойкость которого больше, чем вулканизованного MgO, а прочность меньше, разрушение резко ускоряется при концентрации агрессивного агента в 10 раз большей, чем у более прочного, но менее кислотостойкого. При изменении механической прочности и химической стойкости в одну сторону( например, при их одновременном увеличении) Рс в зависимости от их соотношения может сдвигаться в разных направлениях. Так, при сравнении относительной ползучести разных резин в озоне найдено, что у резины из наирита в Ю рзз больше, чем у СКС-30-1 (см. рис. 198). Это объясняется тем, что разница в химической стойкости между наиритом и СКС-30-1 велика, в то время как по прочностным свойствам резины из СКС-30-1 и из наирита отличаются мало. [c.342]

    Для того чтобы разработать рецепт, отвечающий заданным техническим требованиям, составляют несколько опытных рецептов для данной смеси. По ним изготовляют резиновые смеси в лабораторных резиносмесителях или на вальцах. Затем на лаб0рат0 рных червячных машинах или каландрах проверяют технологические свойства этих смесей. Заготовки резиновых смесей вулканизуют в процессе. Из полученных пластин вырубают образцы и выборочно определяют показатели физико-механических свойств прочность при растяжении, относительное и остаточное удлинение и другие в зависимости от назначения шины, значения и характера напряжений, испытываемых ею при эксплуатации. [c.59]

    Смесь каучуков с введенными вулканизуюпщми агентами выдерживали длительное время (больше месяца) для того, чтобы в ней прошли релаксационные процессы разделения фаз или, наоборот, граничного взаиморастворення— в зависимости от направления процесса достижения равновесия. После длительной выдержки смеси вулканизовали. В другом опыте невулканизованные смеси набухали в парах растворителя более недели, затем в вакууме из них удаляли растворитель и вулканизовали. В обоих случаях, когда были созданы условия для ускорения релаксационных процессов, отрелаксировав-шие вулканизаты имели практически те же физико-механические свойства, что и полученные обычным путем. Но лучшим доказательством высокой стабильности структуры и свойств смесей полимеров служит их повышенное сопротивление утомлению, в том числе в присутствии значительных количеств пластификаторов. Так, смесь СКИ-3 и СКН-40 в соотношении 1 1 характеризуется более высоким сопротивлением утомлению, чем индцвидуальные полимеры, даже в том случае, когда в смесь вводят 65 вес. ч. диметилфталата. При этом режим утомления полимеров и их смесей (знакопеременный изгиб) характеризовался постоянной амплитудой напряжения, когда возможное уменьшение модуля или даже увеличение ползучести образца, содержащего пластификатор, не могло привести [c.43]

    Физико-механические свойства радиационных вулканизатов кожеподобных резин в зависимости от времени формования на машине Берсдорф, дозы облучения и состава вулканизующей системы [c.324]

    Несмотря на интенсивную разработку новых методов бессер-ной вулканизации и новых вулканизующих агентов, применение серы и ускорителей до настоящего времени имеет наибольший удельный вес в производстве резиновых изделий. Исследования в этой области, как известно, весьма обширны (см., например, работы [1—8]). В настоящем разделе будут рассмотрены лишь физико-химические проблемы серной вулканизации, касающиеся кинетики и механизма процесса, структуры поперечных связей и зависимости их строения от типа ускорителя и активатора. Все эти факторы определяют структуру вулканизационной сетки, а следовательно, физико-химические и физико-механические свойства вулкаиизатов. [c.141]

    Смеси на основе комбинаций фтор- и акрилатных каучуков готовят либо на вальцах, либо в резиносмесителе. Вулканизацию осуществляют в две стадии например [130], в прессе при 175°С (8—16 мин в зависимости от содержания более медленно вулканизующегося фторкаучука), а затем в термостате при 170°С в течение 24 ч. Термостатирование при 200°С и выше вызывает разрушение акрилатных каучуков. Показано, что изменение основных свойств резин — напряжения при 100%-ном удлинении, условной прочности, относительного удлинения, сопротивления раздиру, стойкости к тепловому старению в свободном и напряженном состояниях (150°С), стойкости к воздействию жидких агрессивных сред (по набуханию и изменению основных физико-механических свойств — прочности и твердости), а также динамических свойств в зависимости от соотношения каучуков носит преимущественно аддитивный характер синергические и антагонистические эффекты проявляются в незначительной степени. [c.144]



Смотреть страницы где упоминается термин Механические свойства вулканизованного, зависимость: [c.135]    [c.105]    [c.241]    [c.241]   
Химия и физика каучука (1947) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте