Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент от стенки аппарата

    I. Определение продольного коэффициента теплопроводности при встречном направлении потоков газа и теплоты. Последний создается обогревом верхнего или нижнего торца зернистого слоя источником, не мещающим движению газов, например, пластинчатым электронагревателем [29] или инфракрасной лампой [27, вторая ссылка]. Стенки аппарата тщательно изолируют, температуру слоя измеряют в нескольких сечениях на оси аппарата и у стенки. В эксперименте осуществляется одномерный поток теплоты и уравнение (IV. 15) принимает вид  [c.113]


    Для вычисления коэффициента теплоотдачи от стенки аппарата к пленке жидкости предварительно найдем  [c.215]

    Теплообмен между стенками аппарата и фонтанирующим слоем осуществляется, главным образом, за счет конвективного переноса тепла частицами, движущимися вниз в кольцевой зоне Значения коэффициента теплоотдачи для различных твердых материалов при развитом фонтанировании в воздушном потоке находятся в пределах от 51 до 136 Вт/(м -К) [44—117 ккал/(м -ч-°С)]. [c.642]

    II. Определение радиального коэффициента теплопроводности Хг при одномерном потоке теплоты по радиусу аппарата [31]. При этом источник теплоты — электронагреватель — расположен в трубке по оси аппарата либо обогревается внешняя стенка аппарата (рис. IV. 4, а) внутренняя трубка охлаждается водой. Температуру газа на входе поддерживают равной температуре на выходе. В этом случае распределение температуры слоя по радиусу такое же, как для цилиндрической стенки, и коэффициент теплопроводности определяют по формуле [c.114]

    Предварительно примем коэффициент теплоотдачи от пленки жидкости к стенке из табл. 7.4 а = 300 Вт/(м -К), коэффициент теплоотдачи от стенки аппарата к охлаждающей воде—из табл. 6.2 ах = 1000 Вт/(м -К) толщину стенки 6,, = 12 мм, Хст = = 17,5 Вт/(м-К) термические сопротивления = [c.217]

    В насадочных абсорберах жидкость равномерно распределяется по верху насадки, стекает тонкой пленкой по ее поверхности и выводится из колонны снизу. В этой главе будет принято, что коэффициент физической массоотдачи в жидкой фазе эффективная межфазная поверхность а, отнесенная к единице объема насадочного слоя, и объем жидкости I в той же единице объема одинаковы во всех частях колонны. В действительности, если высота колонны в несколько раз больше ее диаметра, жидкость может накапливаться у стенок аппарата, что обедняет ею остальную часть насадки. Этот вопрос обсуждается в главе IX вместе с другими характеристиками насадочных колонн. [c.182]

    Теплоотдача от перемешиваемой жидкости к стенке аппарата зависит от условий работы лопасти. При ориентировочных расчетах коэффициент теплоотдачи от жидкостной пленки к стенке аппарата можно принять по табл. 7.4. лопасти коэффициент теплоотдачи [c.208]

    Предварительно примем толщину стенки аппарата S ,. = 12 мм коэффициент теплоотдачи со стороны греющего пара i = = 10 Вт/(м К) коэффициент теплоотдачи со стороны перемешиваемой пленки (см. табл. 7.4) 2 = 1,5-10 Вт/(м -К) термические сопротивления загрязнений со стороны греющего пара и продукта (см. табл. 7 приложения) ri = Гз = 10" м -К/Вт. [c.210]


    Ряды элементов, прилегающие к стенкам аппарата, имеют отличный от остальных характер укладки. Обычно в этой пограничной зоне плотность неподвижной фазы и коэффициент сопротивления потоку меньше. [c.323]

    Точность, вносимая граничными условиями (VI.27), является, однако, обманчивой. Дело в том, что при их выводе предполагается, что диффузионная модель справедлива повсюду, в том числе и для процессов переноса на малых расстояниях. На самом деле, однако, не существует систем, в точности описывающихся уравнением конвективной диффузии (VI. 14) или (VI. 15) с постоянными значениями линейной скорости потока и коэффициента диффузии. В случае турбулентного потока в реакторе без насадки скорость потока почти постоянна по всему сечению аппарата (кроме тонкого слоя близ его стенки), однако коэффициент турбулентной диффузии является переменной величиной, увеличиваясь пропорционально расстоянию от стенки реактора. В ламинарном потоке перенос вещества осуществляется молекулярной диффузией, так что коэффициент диффузии постоянен. Однако основная причина случайного разброса времени пребывания в реакторе — сильное различие локальных скоростей потока на различных расстояниях от стенки аппарата. Наконец, в реакторах с насадкой, отклонение времени пребывания в реакторе от среднего знйчения вызывается образованием турбулентных вихрей в промежутках между твердыми частицами, разбросом локальных скоростей потока за счет неоднородности упаковки слоя и задержкой вещества в застойных зонах. Во всех этих случаях распределение времени пребывания в реакторе делается близким к нормальному, если длина аппарата достаточно велика, и только в этих условиях диффузионная модель становится пригодной для приближенного описания процесса. [c.211]

    Методика оценки упомянутых трудноопределимых величин и составления расчетного уравнения на основе выражения (Х,11) базируется на анализе движения газового пузыря (диаметром D , объемом Ув) с гидродинамическим следом (его объемная доля /и/) при этом учитывается сжимаемость непрерывной фазы вокруг пузыря. Пусть в псевдоожиженном слое сечением А газ движется со скоростью П при этом скорость его в непрерывной фазе составляет 17а, а скорость подъема пузыря (относительно стенок аппарата) — ыа- Расширение неоднородного псевдоожиженного слоя с учетом коэффициента сжимаемости непрерывной фазы Б < 1 может быть выражено как [c.426]

    Если на пути потока (рис. 3.6, б) установить решетку, то струя, набегая на нее со стороны задней стенки аппарата, начнет по ней растекаться в сторону передней стенки (входного отверстия). Так как степень искривления линий тока при этом будет увеличиваться вместе с ростом коэффициента сопротивления решетки Ср, при определенном значении этого коэффициента вся жидкость за плоской решеткой будет перетекать к передней стенке аппарата и от нее изменит свое направление на 90° в сторону общего движения. Вследствие турбулентного перемешивания с окружающей средой струя за решеткой на всем пути будет подсасывать определенную часть неподвижной жидкости, и в области, прилегающей к задней стенке, образуются обратные токи. Таким образом, профиль скорости за плоской решеткой при боковом входе в аппарат получится перевернутым , т. е. таким, при котором максимальные скорости за решеткой будут соответствовать области обратных токов, образующихся свободной струей при входе (рис. 3.6, а и б). [c.85]

    Отличные о г приведенных выше результаты, полученные при установке плоской решетки с очень большим коэффициентом сопротивления (Ср = = 150), обусловлены влиянием инерционных сил. Струйки тока при растекании по фронту решетки получают направление, обратное направлению входа. Поэтому, выходя из отверстий решетки почти параллельно ее плоскости вблизи передней стенки аппарата, поток резко изменяет свое направление (на 90°) в сторону выхода из аппарата. При таких условиях часть наиболее крупных частиц под действием возникающих на повороте центробежных. . ил выделяется из потока в сторону передней стенки, создавая здесь повышенную концентрацию пыли. [c.314]

    Расчет цилиндрических аппаратов, нагруженных наружным давлением. Под наружным давлением находятся вакуумные аппа- раты, корпуса аппаратов с рубашками и различные внутренние устройства (греющие камеры выпарных установок и др.). При этом (в стенках возникают сжимающие напряжения. Толщину стенки аппарата, находящегося под наружным давлением, рассчитывают на прочность по тем же формулам и с теми же запасами прочности, что и аппараты с внутренним давлением. Коэффициент прочности сварного шва в этом случае принимают равным единице. Однако для аппаратов, находящихся -под внешним давлением, одного расчета на прочность недостаточно. Необходимо проверить также ус- тойчизость оболочки. Тонкостенные оболочки под действием на- ружного давления могут потерять свою первоначальную фюрму и [c.40]


    Если растворенное вещество адсорбируется на стенках аппарата и частицах насадки или вступает в химическую реакцию, то наблюдается обмен с неравными скоростями в противоположных направлениях. Рассмотрим для примера явление адсорбции. Пусть т — константа равновесия адсорбции, тогда обменный поток за счет адсорбции запишется в виде q = а х—а ту, где а — коэффициент скорости адсорбции. [c.383]

    Следует отметить, что в выражении (77) автоматически учитывается изменение массового расхода теплоносителя От, так как каждому расходу будет соответствовать свое значение среднеинтегральной по поверхности температуры теплоносителя т- При переходе к температуре теплоносителя на входе в реактор 1 изменение расхода теплоносителя будет учитываться изменением коэффициента теплопередачи к , так как при изменении расхода теплоносителя меняется коэффициент теплоотдачи от него к стенке аппарата (ст). [c.45]

    При исследовании было определено также, что если вертикальные перегородки разместить на расстоянии 748 О от стенок аппарата, то значение коэффициента теплоотдачи составит 95% от величины, полученной при использовании перегородок, расположенных непосредственно у стенок аппарата. Если в подобных аппа- [c.50]

    Твердые аэрозольные частицы, как правило, испытывают несколько соударений со стенками камеры энергетического разделения, прежде чем происходит процесс сепарации. Для учета этого явления обычно вводится коэффициент отражения частицы при ударе а, который изменяется в пределах 0<а<1,иа = 0 при абсолютно неупругом ударе и а = 1 — при абсолютно упругом. После взаимодействия аэрозольной частицы со стенкой аппарата радиальная составляющая скорости изменяет свое направление, и отраженная частица движется от периферии к центру. При этом скорость радиального смещения будет убывать из-за центробежной силы и силы сопротивления  [c.316]

    Ориентировочные расчеты суммарного коэффициента теплоотдачи в. окружающий воздух от поверхности аппаратов, находящихся в закрытых помещениях, при температуре наружной поверхности стенки аппарата ст. иар = = 50- 350 можно сделать по формуле [0-1, 0-2  [c.603]

    Кроме того, вводим поправочные коэффициенты на шероховатость стенок аппарата /щ 1,15 и наличие гильзы термометра /г = 1,1- Тогда [c.352]

    При орошении стенок аппарата коэффициент сопротивления, определяющий напряжение на стенке аппарата, возрастает, так как из-за волнения поверхности пленки возникнет как бы искус- [c.193]

    Коэффициенты 1/В и 1/В, имепт смысл постоянных времени аккумулирования тепла агентом и разделяющей стенкой аппарата со стороны соотвотсгвувщего теплоносителя. [c.55]

    На рис. У-24 показаны полученные [193] поля коэффициентов продольной турбулентной диффузии (а) и поперечной диффузии жидкости (б) в барботажном слое. Видно, что поля п.т и Епоп подобны они имеют максимальное значение при безразмерном радиусе p = r/i лi0,6 и минимальное — у стенок аппарата. Это показывает, что интенсивность вихревых движений жидкости максимальна на границе между восходящими и нисходящими потоками, хотя средняя ее скорость здесь равна нулю. Заметим, что для [c.196]

    При изучении радиального переноса тепла обнаружено , что эффективная теплопроводность в полупсевдоожиженном слое примерно в 75 раз выше, нежели в неподвижном. При этом рассматриваемая теплопроводность повышается с ростом размера элементов насадки и уменьшением размера псевдоожиженных частиц это является, очевидно, следствием увеличения просветов между элементами непсевдоожиженной насадки, что способствует более интенсивному движению твердых частиц. Коэффициент теплоотдачи к стенкам аппарата при повышении скорости ожижающего агента проходит через максимум. Оказалось, что играет роль форма элементов насадки заметно большие коэффициенты теплоотдачи были получены при использовании латунных цилиндров, нежели стальных шаров. [c.539]

    Исследование теплообмена между стенкой и фонтанирующим слоем при использовании воды в качестве ожижающего агента показало, что в этом случае перенос тепла твердыми частицами, движущимися вдоль стенки аппарата, теряет свое значение по сравнению с конвективным переносом потоком самой воды. Медленное направленное движение твердых частиц в кольцевой зоне, по всей вероятности, ослабляет эти конвективные потоки коэффициенты теплоотдачи в фонтанирующих слоях составляли 430— 580 Вт/(м -К) [370—490 ккал/(м -ч-°С)], тогда как в пустом аппарате без твердых частиц при тех же рабочих скоростях они превышали ИЗО ВтДм -К) [975 (ккал/м -ч-°С)]. [c.644]

    Для повышения эффективности систем решеток расстояние между ними должно быть не меньше определенного значения. Действительно, если при излипше большом коэффициенте сопротивления каждой решетки они расположены слишком близко одна от другой, то течение жидкости будет мало отличаться от течения, которое наблюдается в случае одиночной плоской решетки (рис. 3.11). Например, струя, набегающая по> центру на первую решетку с большим значением коэффициента Ср, как было показано, непосредственно за решеткой растекается радиально. Вследствие ограниченности расстояния между решетками струя не сможет изменить своего радиального течения и будет перетекать через-вторую решетку в том же направлении. Вся жидкость за второй решеткой, перетечет из центральной части сечения к стенкам аппарата (рис. 3.11, а). [c.88]

    Растекание струи в сечениях за плоской решеткой. Рассмотренное в предыдущей главе для бокового входа перетекание струи за плоской решеткой (при отсутствии за ней спрямляющего устройстг.а) из области вблизи задней стенки, противоположной входу к передней стенке (см. табл. 7.6), появляется уже при FJFg 6, но ири больших коэффициентах сопротивления (Ср 150). Если FJF Ю, то перетекание начинается уже при очень малых значениях коэффициента сопротивления (Ср 4- -6) вследствие отмеченного предварительного (до набегания иа решетку) растекания струи по задней стенке аппарата. В результате при Fh/Fo < 6 и определенных Ср получается сравнительно равномерное распределение скоростей за решеткой (см. табл. 7.6). [c.181]

    Предельный коэффициент сопротивления решетки, соответствующий полному перетеканию жидкости за решеткой от задней стенки аппарата к передней, для всех значений FjFg > 10 при боковом входе получается почти одинаковым Спред = 20 -i-30. Перетекания жидкости за плоской решеткой не происходит, если на нее наложить спрямляющее устройство в виде ячейковой решетки (см. табл. 7.6). [c.181]

    Для указанных расчетов необходимо знание коэффициентов теплообмена от стенок реактора к веществу, термического сопротивления стенок реактора и коэффициентов теплоотдачи от теплоносителей к стенкам аппарата для реакторов, использующих теплопе- [c.38]

    Исходные данные. Внутреннее давление рр = 1 МПа, внутренний диаметр аппарата О = 2000 мм, расчетная температура стенок аппарата t = 100 °С, материал — листовой прокат из стали 08Х22Н6Т, сопрягаемые элементы цилиндрическая оболочка толщиной 8=8 мм, эллиптическое днище толщиной Зэ = 8 мм, прибавка к расчетной толщине стенки с = 1 мм коэффициент прочности сварных швов ф = 1 допускаемое напряжение и модуль продольной упругости при рабочей температуре [о] = 146 МПа, Е— 1,99.10 МПа. [c.69]


Смотреть страницы где упоминается термин Коэффициент от стенки аппарата: [c.94]    [c.99]    [c.116]    [c.155]    [c.205]    [c.113]    [c.122]    [c.435]    [c.436]    [c.539]    [c.224]    [c.91]    [c.188]    [c.383]    [c.291]    [c.51]    [c.614]    [c.190]    [c.156]    [c.139]    [c.191]   
Расчеты аппаратов кипящего слоя (1986) -- [ c.109 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Стевны

Стейси



© 2025 chem21.info Реклама на сайте