Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стабилизатор диффузия

    Показано [153], что процессом, определяющим потерю стабилизатора в полимерах, является диффузия стабилизатора. Диффузия — наиболее медленная стадия процесса (по сравнению с экстрагированием стабилизатора из поверхностного слоя). Роль диффузии при улетучивании стабилизаторов иллюстрируется зависимостью скорости улетучивания от толщины пленки каучука (рис. 2.24). [c.68]


    Для коалесценции капель необходимо уменьшить толщину пленки и разрушить пленку. Наиболее просто это достигается повышением температуры. При повышении температуры растворяющая способность нефти по отношению к стабилизаторам повышается, увеличивается скорость диффузии стабилизатора в нефть, снижается вязкость и когезия пленки, уменьшается вязкость самой нефти. [c.26]

    Высокомолекулярные соединения способны образовывать не только истинные растворы, но и типичные лиофобные золи, если в качестве дисперсионной среды взята жидкость, по отношению к которой высокомолекулярное вещество является лиофобным. Такие коллоидные растворы отличаются ясно выраженной лиофобностью, что выражается в слабом взаимодействии вещества дисперсной фазы с дисперсной средой, требуют обязательного наличия стабилизатора для создания агрегативной устойчивости, обладают слабой диффузией и очень малым осмотическим давлением. Так же как и лиофобные золи, коллоидные растворы ВМС обладают термодинамической неустойчивостью, вызванной значительным избытком поверхностной свободной энергии. [c.329]

    Однако такие соединения, присутствующие в растворе в виде крупных мицелл или макромолекул, будучи хорошими стабилизаторами суспензий, эмульсий и пен, не могут служить диспергаторами, так как в соответствии с размерами их частичек проникновение в поверхностные дефекты (устья микротрещин) затруднено и кинетика их адсорбции, как и обычные диффузии и миграции по поверхностям, сильно замедлена. Вместе с тем поверхностная активность таких веществ сравнительно мала вследствие более симметричного распределения полярных и неполярных групп в крупных частичках. [c.70]

    Вещества (ПАВ и ВМС), создающие структурно-механический барьер, называются стабилизаторами. Адсорбционные слои структурируются вследствие ориентации молекул и боковой когезии (в результате притяжения диполей полярных групп соседних молекул, образования водородных связей или гидрофобного взаимодействия неполярных групп). Прочность полимерных слоев увеличивается во времени (в отличие от слоев ПАВ), достигая предельного значения лишь через несколько часов, что обусловлено замедленной диффузией макромолекул и медленной ориентацией их на границе раздела фаз. [c.260]

    В равновесии с водой при нормальных температуре и давлении такие топлива содержат в зависимости от состава 2—3 % воды. Влияние воды в первую очередь проявляется в уменьшении механической прочности материала (этот эффект обратим). Долговременное воздействие приводит к гидролизу полимера и пластификаторов, нитрации и окислению стабилизаторов, а также гидролизу и окислению баллистических модификаторов, т. е. к необратимым реакциям, В присутствии биологически активных агентов происходит погружение углеводородов и нитратов. Скорость вымывания растворимых солей невелика. Алюминий, добавляемый в небольших концентрациях для подавления резонансного горения и повышения отдаваемой энергии, не подвергается быстрому воздействию солёной воды из-за пассивации металла нитратами и медленной диффузии солей через коллоид. [c.494]


    В экспериментальных исследованиях зоны смещения между потоками горячих продуктов сгорания и холодной горючей смеси, указанных выще, подробно изучалась зона, расположенная ниже плохообтекаемых стабилизаторов. Изучение контролируемых, вначале разделенных потоков является весьма привлекательным. Однако Баррер [5] только кратко сообщает о работе, в которой использовалась камера сгорания с раздельными параллельными потоками. В одной половине канала протекала свежая горючая смесь, а в другой — горячие продукты сгорания. Это оборудование использовалось для изучения характеристик расстояния зажигания, распределений температур и процесса диффузии. [c.73]

    На основании этих исследований была построена гипотетическая модель, представленная на фиг. 12. В этой модели в соответствии с результатами зондирования предполагается, что любые газы, попадающие в зону, расположенную на расстоянии примерно одного диаметра ниже стабилизатора, сразу же перемешиваются и распределяются но всей зоне. Вещество попадает в эту зону посредством молекулярной диффузии, турбулентной диффузии и рециркуляции. Вещество выходит из этой зоны посредством молекулярной диффузии, турбулентной диффузии и потока, который предполагается примерно равным потоку вещества, поступающего в эту зону при рециркуляции. Вещество, покидая след потоком, проходит вдоль границы, через которую происходит интенсивная -турбулентная диффузия, способствующая выравниванию его атомарного состава с составом подаваемой смеси. Очевидно, на основании этого можно считать, что именно это вещество и циркулирует в указанной зоне. [c.208]

    Например, в случае бедных смесей газы, соприкасающиеся с продуктами сгорания в следе, будут холоднее при удалении пограничного слоя и вследствие диффузии смесь, сгорающая в вихревых слоях, будет более бедной, чем подаваемое топливо, если в качестве топлива использовать пропан или высшие углеводороды. В этом случае можно ожидать, что при удалении пограничного слоя будет уменьшаться бедный предел устойчивой работы стабилизатора пламени. Далее, можно ожидать, что удаление пограничного слоя оказывает влияние, которое до некоторой степени будет воспроизводить изменение состава. Так, при малых числах Не (небольшой стабилизатор и низкая скорость) изменение состава не очень велико, а изменение предела срыва обусловлено главным образом понижением температуры несгоревших газов. С увеличением скорости и размеров стабилизатора или одного из этих факторов (с увеличением числа Не) изменение состава становится уже значительным, н этот эффект складывается с эффектом охлаждения несгоревших газов. Наконец, при высоких скоростях и больших размерах стабилизатора состав снова изменяется незначительно, и на предел устойчивости в этом случае влияет главным образом холодный свежий газ. Эти общие рассуждения достаточно хорошо подтверждаются экспериментальными данными. Результаты, полученные на стабилизаторе 6 мм, указывают на большее изменение пределов устойчивости с увеличением скорости, а резуль- [c.215]

    Различия в кривых срыва, получаемые при введении добавок газа непосредственно в след и через верхние или боковые отверстия в стабилизаторе, вполне согласуются с описанной выше моделью. Визуальные наблюдения и фотографии показывают, что вершина пламени вблизи поверхности стабилизатора отклоняется от свободного слоя в сторону зоны рециркуляции. Таким образом, газы, вводимые непосредственно в след, диффундируют по короткому пути элементарного объема стабилизации. Те га,зы, которые вводятся вне следа, при диффузии должны пересекать треугольную область разрыва. Последний путь, очевидно, оказывает более высокое сопротивление переносу, чем первый. [c.241]

    Функция, представленная уравнением (3), приведена на фиг. I. При вычислении этой функции было выбрано предположительное значение для R, т. е. отношения количества воздуха, поступающего в вихревую зону, к количеству воздуха, проходящего через проекционную площадь стабилизатора, и вычислены значения констант i, Сг, Сз, С4 и f, которые зависят только от свойств топлива. В уравнениях диффузии и [c.289]

    В каждом случае контролирующим параметром является Р, пороговая степень полимеризации для зародышеобразования, которая связывает конечное число полученных частиц с растворимостью полимера, растворяющей способностью среды, концентрацией и природой стабилизатора. Однако форма соотношений весьма различна для диффузионных и равновесных моделей. Первые содержат среди параметров средний коэффициент диффузии и концентрацию мономера, которые не фигурируют в равновесных моделях. В последних главенствующую роль играет зависящий от молекулярной массы коэффициент распределения олигомеров между разбавителем и поверхностью или объемом частиц. [c.190]


    Для устранения этого эффекта, облегчения коалесценции частиц полимера и получения более однородной пленки используют композиции, содержащие смеси различных алифатических углеводородов как с высокой, так и с низкой температурами кипения. При высушивании высококипящие углеводороды испаряются не сразу, заполняют пустоты между частицами и остаются там до того момента, пока не будут в конце концов удалены при нагревании. Подбор пластификаторов ведут так, чтобы они не взаимодействовали с частицами полимера до тех пор, пока разбавитель не испарится и пленка не будет нагрета. Сочетание этих методов предотвращает эффект растрескивания при быстром испарении низкокипящего растворителя и обеспечивает сохранение целостности пленки до того момента, когда нагревание приведет к диффузии пластификатора в частицы полимера. Последнее снижает температуру стеклования полимера и придает текучесть его частицам, сцепляющимся друг с другом, причем привитой стабилизатор смещается с контактирующих поверхностей (см. раздел VI.3). [c.305]

    В литературе приведены многочисленные сведения о полимеризации различных виниловых мономеров, диспергированных в латексе натурального каучука. Для того чтобы между мономером и каучуком протекала реакция, было добавлено небольшое количество поверхностноактивного стабилизатора и увеличено время обработки для обеспечения возможности диффузии молекул мономера в частички каучука (в этом случае полимеризация происходила в основном в набухших частичках каучука). При введении повышенных количеств стабилизатора большая часть мономера полимеризуется не в частицах каучука (возрастает количество образующегося гомополимера). [c.276]

    Полимерные материалы обычно содержат в своем составе кроме собственно полимера различные низкомолекулярные соединения, в частности стабилизаторы, пластификаторы, красители, случайные и технологические примеси. При использовании полимерных материалов эти посторонние вещества могут входить в контакт с водой, органическими жидкостями, твердыми веществами и продуктами питания, что может вести к переносу растворенных в полимере добавок и примесей в окружающую среду, загрязнять ее, а также сокращать срок службы полимера. С другой стороны, низкомолекулярные вещества из внешней среды могут проникать в полимерную композицию. Обмен примесями между окружающей средой и полимерным материалом контролируется процессами, основанными на сорбции (растворении) и диффузии. Эта проблема затрагивает различные аспекты растворимости добавок в полимерах в свете их деструкции и стабилизации. [c.108]

    Высокомолекулярные добавки не являются летучими и их диффузия в полимере при повышенной температуре очень медленная именно поэтому вымывание является основной причиной нежелательной потери стабилизаторов и других добавок из полимерного материала, используемого вне помещений или в потоках жидкостей в трубах и контейнерах. Существует несколько факторов, которые могут влиять на вымывание стабилизатора из полимера, например, растворимость добавки и растворимость растворителя в полимере [55]. Благодаря низкой растворимости добавки ее часть может находиться в полимере в мета-стабильном состоянии или образовывать отдельную фазу — это быстро теряется. С другой стороны, растворитель облегчает миграцию стабилизаторов, входя в полимер и увеличивая сегментальную подвижность макромолекул. Способность растворителя удалять добавку связана с растворимостью растворителя в полимере чем выше его растворимость, тем сильнее эффект вымывания. [c.125]

    Потери добавок полимерами вследствие вымывания зависят, кроме указанных выше факторов, от типа добавки, состава экстрагируемой среды, температуры, времени контакта. Так, например, антиоксиданты, применяемые в полиолефинах, в большой степени различаются по скорости вымывания водой алкилированные фенолы вымываются сравнительно медленно с приблизительно постоянной скоростью ароматические амины, наоборот, вымываются очень быстро. Добавление к полимеру, содержащему антиоксидант, другого вещества ускоряет вымывание. Значительно быстрее стабилизаторы экстрагируются из полимера органическими растворителями. Увеличение концентрации добавки в полимере может ускорять процесс вымывания из-за увеличения коэффициента диффузии. [c.420]

    Насыщающая композиция представляет собой крем-нийорганический эластомер, содержащий стабилизатор в количестве 2. .. 4 %. Такие дозировки обеспечивают высокую скорость диффузии, однородность обработки и не вызывают образования агломератов стабилизатора на поверхности резин. Наиболее сильное влияние на процесс диффузии оказывает температура. [c.441]

    Скорость диффузии воды в пластмассы различна [4] и зависит от многих факторов, и прежде всего от природы полимера, содержания пластификаторов, эмульгаторов, стабилизаторов, наполнителей, пигментов, а также от толщины изделия. Количество поглощенной пластмассой воды возрастает вначале быстро, затем сорбция замедляется, пока не достигнет определенного предельного значения — у каждого материала разного. Количество поглощенной воды возрастает по мере повышения температуры, увеличения поверхности и уменьшается с увеличением толщины материала. [c.21]

    В процессе нанесения клея и формирования клеевого шва эмульгаторы и стабилизаторы, отличающиеся, как правило, высокой поверхностной активностью, взаимодействуют со склеиваемыми поверхностями, что вносит вклад в образование адгезионных связей полимера с субстратом. Естественно, что их присутствие сказывается на коалесценции латексных частиц по мере диффузии и испарения дисперсионной среды в процессе склеивания путем диффузии в склеиваемый материал и испарения в окру-с-жающую среду. [c.65]

    Переработка свеклы в сахар-это сезонное производство, и поэтому на сахарных заводах стараются сократить технологический цикл за счет интенсификации работы оборудования. Однако этому мешает пена. Обильная пена сопровождает почти все технологические этапы сахароварения. Именно пена причина того, что нарушается ритмичность производства, замедляются основные химические и физико-химические процессы, снижается производительность оборудования. Пена замедляет процессы диффузии при очистке и осветлении соков, их выпаривание, тормозит уваривание продукта и кристаллизацию сахара в мешалках. В соках сахарной свеклы содержатся поверхностно-активные вещества и стабилизаторы пены они и являются причиной обильного пенообразования. Основной пенообразователь в сахарном производстве-свекловичный сапонин-высокоактивный ПАВ. Стабилизаторами пены служат продукты разложения белковых веществ. Поэтому свекловичные пены чрезвычайно устойчивы. [c.154]

    В табл. 1.5 и 1.6 приведены значения коэффициентов диффузии кислорода и стабилизаторов в полимерах с указанием температурной области, в которой проведены измерения. Из таблиц видно, что коэффициенты диффузии кислорода и стабилизаторов в полимерах при 25 °С находятся в пределах 10" —10 см с и 10 — 10" см /с соответственно. Процесс диффузии стабилизаторов в полимерах характеризуется более высокими по сравнению с кислородом энергиями активации. Величины и могут меняться вблизи температуры стеклования полимера и температуры плавления добавки [18, 22, 60, 70]. Коэффициенты диффузии стабилизаторов уменьшаются с увеличением молекулярной массы добавки, однако однозначной зависимости между ними нет. Так, в работе [76] наблюдали линейную зависимость между логарифмом коэффициента диффузии 2-гидроксибензофенонов и эфиров тиодипропионатов при 80 °С и молекулярной массой добавок, а в [60 ] — линейную зависимость между логарифмом коэффициентов диффузии антиоксидантов в полиэтилене при 50 °С и логарифмом молекулярной массы добавок. [c.40]

    Растворы высокомолекулярных соединений не являются коллоидными системами. Они отличаются от последних характерными признаками, будучи термодинамически равновесными системами, агрегативно устойчивыми без стабилизатора. Однако некоторые свойства коллоидных систем и растворов высокомолекулярных соединений одинаковы молекулы полимеров близки по размерам к коллоидным частицам, поэтому и те и другие системы обладают небольшой способностью к диффузии их можно диализовать растворы высокомолекулярных соединений, как и коллоидные системы, обнаруживают опалесценцию. Наконец, при определенных условиях в растворах полимеров и в коллоидных системах возможно структурирование. Поэтому многие физико-химические свойства высокомолекулярных соединений рассматриваются в курсе коллоидной химии. [c.69]

    Когда местная турбулентность создается за счет набегания потока на плохо обтекаемое тело ( экраны , воротники , сетки, расположенные вблизи форсунки или горелки, или в отдельных случаях сама форсунка или горелка), масштаб дробления оказывается примерно одного порядка с начальным масштабом турбулентности. В этом случае горение осуществляется по второму механизму (турбулентное смесеобразование). Горение устойчиво держится в турбулентном следе, так как среди всех возможных, образующихся концентраций всегда находится и такая, которая необходима для воспламенения при данных условиях вновь образующейся и поступающей к месту горения рабочей смеси. По мере удаления потока от источника турбулизации (края плохо обтекаемого тела) масштаб турбулентности будет расти, а масштаб дробления останется примерно прежним или даже уменьшится за счет вторичного дробления. В конце концов на некотором расстоянии от стабилизатора воспламенения (источника турбулизации) масштаб дробления станет настолько меньше масштаба турбулентности, что горение начнет итти по первому механизму (микросмешение посредством молекулярной диффузии), что должно привести к ухудшению хода процесса выгорания. Такое положение вещей и наблюдается обычно в хвосте пламени диффузионного факела. Впрочем, этому должны способствовать и другие факторы уменьшение концентрации окислителя в потоке, охлаждение факела и пр. Для того чтобы микродиффузионное горение протекало в диффузионной области, необходимо соблюсти условие [c.97]

    Реакция Шоттен — Баумана между хлорангидридами дикарбоновой кислоты и диаминами может проводиться также путем поликонденсации на границе раздела фаз при комнатной температуре. В этом случае оба исходных компонента растворяют в двух различных растворителях, которые смешиваются либо частично, либо не смешиваются совсем. Затем оба раствора осторожно сливают. При этом поликонденсация может происходить только на границе раздела жидких фаз. Тонкая полиамидная пленка, образующаяся практически мгновенно, препятствует дальнейшей диффузии мономеров друг к другу. Поликонденсация может продолжаться только после удаления этой пленки. Таким образом, этот процесс возможно осуществлять непрерывным способом. Поликонденсация на границе раздела фаз проводится также и в дисперсии. Для этого раствор хлорангидрида дикарбоновой кислоты при энергичном перемешивании диспергируют в водном растворе диамина в присутствии растворимого в воде стабилизатора дисперсии. В этом случае поликонденсация происходит на поверхности мелких капель. В качестве растворителя для диамина применяют воду, а для хлорангидрида кислоты — хлорированные алифатические углеводороды. [c.54]

    В описанных выше исследованиях с достаточной определенностью установлено, что механизм стабилизации пламени на телах илохообтекаемой формы ири больших скоростях потока существенно отличается от механизма стабилизации пламен на горелках. При стабилизации пламени плохообтекаемыми телами реакция в подаваемой смеси инициируется не при распространении пламени в свежий газ, а в результате обмена энергией и массообмена между потоком горячих продуктов сгорания, циркулирующих в вихревой зоне, и свежим газом, отделяющимся от стабилизатора. Очевидно, многие авторы придерживаются такой точки зрения [13, 18, 20]. Однако высказывались предположения, что отделение пограничного слоя от тела плохообтекаемой формы питает зону с относительно низкой скоростью Б точке, достаточно удаленной от какой-либо гасящей поверхности, так что реакция инициируется именно при самораспро-странении пламени. В силу этих обстоятельств влияние молекулярной диффузии все еще может иметь некоторое значение. [c.197]

    Рассматривая третий путь — обратный поток энергии вдоль оси пламени в направлении стабилизатора, начинающийся в светящейся зоне и проходящий через вершину пламеии элементарного объема зажигания, — следует предполагать целый ряд возможных путей переноса энергии, например излучением, с помощью электронов, протонов, свободных радикалов, атомов и заряженных радикалов. Электроны и протоны присутствуют в чрезвычайно малых концентрациях, радикалы обладают сравнительно малой подвижностью, а столкновения радикалов, приводящие к обрыву цепи, ограничивают длину цепи, поэтому они не играют существенной роли в изучаемом процессе. Поглощение лучистой энергии маловероятно, но имеются надежные экспериментальные доказательства легкой рекомбинации атомов водорода, которые обладают большой подвижностью и по сравнению с другими радикалами могут мигрировать относительно далеко, пока в результате тройного столкновения не высвободится энергия рекомбинации. В результате рекомбинации атомов водорода Н—Н выделяется 103 ккал/моль. Атомы водорода, выделяя тепло, инициируют также цепные реакции горения в предварительно перемешанной смеси прп непламенных температурах. Диффузия и рекомбинация атомов водорода рассматривались в качестве одного из звеньев механизма, определяющего скорость распространения пламени в свежую смесь. Здесь эта схема также принимается в качестве механизма, посредством которого тепло подводится в элементарный объем зажигания и тем самым оказывает влияние на пределы устойчивости. Эта точка зрения подтверждается результатами работы Лапидуса, Розена и Уилхелма [6], которые экспериментально установили, что скорость зажигания и распространения пламени от одного конца щели горелки до другого существенно изменяется (причем сохраняется воспроизводимость) в зависимости от каталитического характера стенок устья горелки. Предполагая, что различные скорости распространения пламени обусловлены изменением концентрации свободных радикалов во фронте пламени вследствие их рекомбинации на поверхности, авторы предложили теоретическую модель, с помощью которой удалось количественно определить значения коэффициентов рекомбинации на поверхности по отношению к платиновой поверхности. В случае сухих поверхностей относительные коэффициенты имели следующие значения платина Ю" , латунь 10 , окись магния 10 ". Все поверхности, покрытые влагой, дают значения коэффициента рекомбинации меньше 10" . Таким образом, если радикалы могут достигать поверхности стабилизатора, как это указы- [c.239]

    Исследование зародышеобразования и его подавления захватом олигомеров, впервые описанное Фитчем и Тзаи, было рассмотрено нами для получения соотношений, соответствующих различным механизмам полимеризации и допускающих модификацию теории с учетом влияния стабилизатора. Предложены аргументы, свидетельствующие в пользу рассмотрения захвата олигомеров не как диффузионного процесса, а как равновесия. По мере роста олигомеров последнее сдвигается в сторону образования частиц это позволило нам предложить альтернативные уравнения. Однако оба подхода чрезмерно упрощены в реальном процессе, вероятно, происходит постепенный переход от равновесия к диффузии по мере роста каждого олигомера. При очень низких степенях полимеризации уравнения, основанные на диффузии с необратимым захватом, значительно переоценивают вероятность захвата, в то время как при высоких степенях полимеризации скорость роста и уменьшение растворимости олигомеров, вытекающие из равновесной модели, соответствуют большей скорости захвата, чем это допускает диффузия. Полного теоретического исследования этой сложной модели мы не предлагаем. Вполне вероятно, что та или другая из упрощенных моделей, основанных на диффузии или равновесии, может дать вполне хорошее приближение к практическим системам, в зависимости от условий, характеристик растворимости полимера и, в частности, от значения Р пороговой степени полимеризации для зародышеобразования. Возможно, что равновесие играет более важную роль в углеводородных разбавителях, чем в водных дисперсионных системах, изученных Фитчем с сотр. Такие вопросы могут быть разрешены только посредством экспериментальных исследований, при тщательном соблюдении условий, обеспечивающих постоянство растворяющей способности среды полученные к настоящему времени ограниченные данные не позволяют сделать определенных выводов, в частности, вследствие формального сходства уравнения поверхностного равновесия и. уравнения Фитча и Тзаи, зависящих одинаковым образом от общей площади поверхности частиц. [c.195]

    В рассмотренной здесь идеальной (т. е. не содержащей стабилизатора) системе деформация частиц приводит к тесным контактам чистых поверхностей полимеров. Даже на этой стадии адгезия между такими поверхностями сильна, особенно для умеренно полярных полимеров, которые обычно встречаются в неводных дисперсионных системах. Однако, как показал Воюц-кий [28], если поверхности контактирующих совместимых полимеров, способных к пластической или вязкой деформации, не содержат значительных количеств загрязнений, то через границу раздела происходит медленная молекулярная диффузия, так что в конце концов граница фактически исчезает. Следовательно, в рассмотренном здесь случае идеальной системы должна была бы получаться полностью однородная монолитная пленка, имеющая свойства, в основном аналогичные свойствам пленок, отлитых из растворов полимеров, хотя необходимое для такого созревания время может оказаться очень большим. [c.279]

    Схема простейщего диализатора представлена на рис. 101. Мешочек, изготовленный, например, из коллодия, наполняется коллоидным раствором, подлежащим очистке, и укрепляется в каком-либо сосуде с проточной дистиллированной водой. Молекулы и ионы свободно проходят через стенки полупроницаемого мешочка, а коллоидные частицы задерживаются ими. При погружении мешочка, наполненного золем, в дистиллированную воду начинается диффузия ионов электролита из золя, где их концентрация больше, в дистиллированную воду, где их концентрация практически равна нулю, а молекул воды, наоборот, — из воды в золь, где их концентрация меньше. В результате золь очищается от ионов электролитов. При этом из золя удаляются не только ионы посторонних электролитов, но и ионы электролита-стабилизатора. Поэтому слишком длительный диализ, когда из золя вымываются не только посторонние электролиты, но и электролит-стабилизатор, разрушает коллоидный раствор. Недостатком такого метода очистки золей является чрезмерная длительность процесса (дни и недели) и в связи с этим большой расход дистиллированной воды. [c.329]

    УФ-свет может ускорять процессы разрыва цепей. Кроме того, доступность кислорода и тепла также являются ключевыми факторами при определении кинетики деструкции. При температурах переработки ПП скорость реакций деструкции крайне высока. Последующая экструзия или литье под давлением также могут вызвать сильную деструкцию полимера. В твердой форме ПП является частично кристаллизующимся полимером с содержанием кристаллической фазы от 40 до 60%. Кристаллические области малопроницаемы для кислорода, поэтому окисление происходит только в аморфных областях. Мита [75] указывал, что скорость диффузии кислорода намного медленнее, чем скорость реакции, так что окислительный процесс является главным образом поверхностным эффектом [76]. Во многих случаях поверхность становится матовой, мутной и даже хрупкой. Очевидно, что нестабилизированный ПП в присутствии воздуха весьма подвержен окислению и деструкции. Поэтому необходимо с помощью различных стабилизаторов превращать ПП в стойкий материал. [c.92]

    Такие стабилизаторы, как антиоксиданты, дезактиваторы металла и УФ-погло-тители добавляются в полимеры для снижения деструкции как на стадии производства, так и в течение всего срока службы полимерного изделия. Для исследования деструкции полимера или совместимости между химикатами-добавками и полимерами важно владеть аналитическим методом, который дает как идентификацию, так и количественную меру химикатов-добавок в полимере. Фурье-инф-ракрасная спектроскопия [15,16], УФ-спектроскопия [17], газовая хроматография, жидкостная хроматография высокого разрешения (ЖХВР) и дифференциальная сканирующая калориметрия (ДСК) — все эти методы могут применяться как аналитические инструменты для идентификации и определения концентрации растворенных стабилизаторов и их однородного распределения. Фурье-инфракрасная спектроскопия и УФ-спектроскопия являются самыми удобными методами, так как их можно применять для анализа образца, не нарушая его морфологию в твердом состоянии. Кроме того, можно выявлять деструкцию или изменения на их ранней стадии благодаря чувствительности методик. Далее, коэффициент диффузии химикатов-добавок можно оценить с помощью дисков [18]. Диск, содержащий хи-микаты-добавки, помещается в центр стопы дисков без добавок. В течение определенного времени и при определенной температуре происходит диффузия. Затем с помощью спектроскопических измерений определяется концентрация добавок в каждом из дисков. Зная толщину дисков и концентрацию химиката-добавки, определяется коэффициент диффузии. [c.257]

    Диффузионная поверхностная стабилизация основана на ззхонах диффузии веществ в поверхностные слои отформованных изделий. Она заключается во введении в готовые изделия или заготовки полимера стабилизаторов из различных сред воды, спиртов, масел и других растворителей). В принципе стабилизация с поверхности может быть успешно осуществлена и из газовой фазы. Важным моментом поверхностной стабилизации является то, что введенный стабилизатор не вызывает изменений механических свойств изделий, как это может иметь место при введении стабилизатора во весь объем. [c.439]

    Применение. В микроскопии в качестве гипертонического фиксирующего раствора [Берстон, 23] и в гистохимии ферментов как добавка для сохранения активности -глюкуронидазы и эстеразы, а также для предотвращения диффузии кислой фосфатазы в инкубационную среду [I, Пирс, 341, 398]. В химической, текстильной, полиграфической, керамической, бумажной, медицинской, пищевой промышленностях и в сельском хозяйстве в качестве стабилизатора, эмульгатора, загустителя, связующего и клеющего вещества. [c.236]

    Работоспособность металлополимерных материалов и деталей обусловлена адгезией полимера к металлу, зависящей от множества факторов физико-химических свойств полимера и металла, наличия в полимере наполнителей, стабилизаторов и т.д., технологии получения металлополимерного контакта и т.д. При контакте полимера и металла из/меняются свойства граничных слоев обоих материалов [10, 12, 17]. Металлы могут ускорять и подавлять кристаллизацию полимеров, изменять скорость термической и окислительной деструкции макромолекул, разрыхлять или уплотнять ИХ упаковку. Влияние металла на структуру полимеров может простираться на десятки и сотни микрон. Расплавы полимеров могут разрушать поверхностные слои металлов, ускорять или тормозить окисление металла. Появление металлов и их соединений в объеме полимеров обусловливает переход от гетерогенных контактных процессов, инициируемых металлами, к гомоген ным. Например, при окислении расплава полиэтилена в контакте со свинцом гетерогенный катализ окисления сменяется гомогенным, обусловленным диффузией в расплав свинецсодержащих продуктов реакций [20]. [c.15]

    Хираи [391] обнаружил, что частицы каучука в АБС-полиме-рах при окислении становятся жестче и в них возникают микро-трешины, которые распространяются в непрерывной фазе пластика параллельно облученной поверхности (рис. 3.31). Он показал также, что процесс старения АБС-пластиков, за исключением поверхностных слоев, контролируется диффузией кислорода. Поскольку стабилизаторы, поглощающие УФ-излучение, эффективны только для внутренних областей образца, то этот метод защиты от старения не пригоден для защиты поверхности материала [391]. Для эффективного предотвращения окислительного разрушения полимерных смесей Хираи предлагает использовать покрытия из материалов с низкой проницаемостью, например из сарана. Согласно Воллмерту [963], разрушения фазы каучука вследствие окисления двойных связей можно избежать, используя насыщенные каучуки, например полибутилакрилат. В этом случае окислительная деструкция материала существенно уменьшается (см. разд. 9.1). Коэффициенты теплового расширения полимерных смесей и привитых сополимеров рассмотрены в разд. 12.1.3.3. [c.113]

    Одно из важнейших требований — совместимость стабилизатора с полимером. В основном совместимость определяется способностью стабилизатора легко растворяться в полимере и существовать в нем, как в истинном растворе, что трудно выполнимо в случае высококристалличных полимеров. Однако это требование является недостаточным, поскольку многие низкомолекулярные вещества способны мигрировать к поверхности полимерного материала и вследствие этого с той или иной скоростью удаляться из него. Миграция добавки из образца уменьшает эффективность стабилизации и при контакте с пищевыми продуктами может ухудшать их качество. Эта миграция особенно сильна, если стабилизатор не связан с полимером адсорбцией, такой, например, какая имеет место при окрашивании целлюлозных материалов высоко субстантивными красителями. Поэтому в характеристики совместимости включают также параметры диффузии стабилизатора в полимере и скорость потери его полимером в результате миграции. Так, полиэтилен и полипропилен намного лучше стабилизируются о-гидроксибензофенонами, содержащими Се—С1б-алкиль-ные группы, чем незамещенными, из-за лучшей их растворимости и меньших потерь в результате диффузии. Ограниченная совместимость бензотриазольных соединений с полиолефинами и лучшая — с поливинилхлоридами и полиэфирами объясняет, почему они малоэффективны для первых как стабилизаторы и вполне приемлемы для вторых. Введение в массу полимера высокосовместимого стабилизатора часто осуществляется непосредственно при синтезе полимера или в процессе переработки. Например, в полиметилакрилат стабилизатор может быть введен еще до стадии полимеризации, в раствор мономера. С целью повышения совместимости стабилизаторы лучше химически связывать с макромолекулами полимера или вводить их при полимеризации как сополимеризуе-мые компоненты, чем в качестве дисперсных частиц. В этом направлении в настоящее время ведутся исследования. [c.163]


Смотреть страницы где упоминается термин Стабилизатор диффузия: [c.196]    [c.231]    [c.336]    [c.85]    [c.196]    [c.242]    [c.56]    [c.242]    [c.167]    [c.33]   
Стабилизация синтетических полимеров против дейсвия тепла и света (1972) -- [ c.106 , c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Стабилизаторы



© 2025 chem21.info Реклама на сайте