Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефтяные дисперсные системы влияние температуры

    В этой главе рассматриваются вопросы учета сырой нефти при ее дальнейшей транспортировке, не затрагивая вопросов измерения дебита нефтяных скважин. Под сырой нефтью будем подразумевать любую нефть (жидкость), полученную после сепарации, без всякого ограничения содержания каких-либо примесей (воды, солей, механических примесей и т.д.) и перекачиваемую на установки подготовки нефти. Эта жидкость представляет собой сложную смесь нефти, растворенного газа, пластовой воды, содержащей, в свою очередь, различные соли, парафина, церезина и других веществ, механических примесей, сернистых соединений. При недостаточном качестве сепарации в жидкости может содержаться свободный газ в виде пузырьков - так называемый окклюдированный газ. Все эти компоненты могут образовывать сложные дисперсные системы, структура и свойства которых могут быть самыми разнообразными и, самое главное, не постоянными в движении и времени. Например, структура и вязкость водонефтяной эмульсии могут изменяться в широких пределах в процессе движения по трубам, в зависимости от скорости, температуры, давления и других факторов. Всё это создаёт очень большие трудности при учете сырой нефти, особенно при использовании средств измерений, на показания которых влияют свойства жидкости, например, турбинных счетчиков. Особенно большое влияние оказывают структура потока, вязкость жидкости и содержание свободного газа. Частицы воды и других примесей могут образовывать сложную пространственную решетку, которая в процессе движения может разрушаться и снова восстанавливаться. Поэтому водонефтяные эмульсии часто проявляют свойства неньютоновских жидкостей. Измерение вязкости таких жидкостей в потоке представляет большие трудности из-за отсутствия методов измерения и поточных вискозиметров. Измерения, проводимые с помощью лабораторных приборов, не дают истинного значения вязкости, так как вязкость отобранной пробы жидкости отличается от вязкости в условиях трубопровода из-за разгазирования пробы и изменения условий измерения. Содержание свободного газа зависит от условий сепарации и свойств жидкости. Газ, находясь в жидкости в виде пузырьков, изменяет показание объемных счетчиков на такую долю, какую долю сам составляет в жидкости, то есть если объем газа в жидкости составляет 2 %, то показание счетчика повысится на 2 %. Точно учесть содержание свободного газа при определении объема и массы нефти очень трудно по.двум причинам. Во-первых, содержание свободного газа непостоянно и может изменяться в зависимости от условий сепарации (расхода жидкости, вязкости, уровня в сепараторах и т.д.). Во-вторых, технические средства для непрерывного измерения содержания газа в потоке в настоящее время отсутствуют. Имеющиеся средства, например, устройство для определения свободного газа УОСГ-ЮОМ, позволяют производить измерения только периодически и дают не очень достоверные результаты. Единственным способом борьбы с влиянием свободного газа является улучшение сепарации жидкости, чтобы исключить свободный газ или свести его к минимуму. Для уменьшения влияния газа УУН необходимо устанавливать на выкиде насосов. При этом объем газа уменьшается за счет сжатия. [c.28]


    Свойства нефтепродуктов определяются условиями их дальнейшей эксплуатации, хранения. Так, профилактические средства различного назначения должны характеризоваться высокими тиксотропными свойствами. Соответствующими исследованиями показано, что период восстановления полностью разрушенной структуры зависит от группового состава профилактического средства, температуры его применения. Кроме того, необходимо обеспечить определенный уровень агрегативной устойчивости профилактических средств с целью предупреждения расслоения нефтяной дисперсной системы на фазы при транспортировании и хранении. Поэтому выбор компонентов для нефтяной композиции следует проводить с учетом их влияния на структурно-механические свойства и агрегативную устойчивость нефтяной системы, [c.44]

    В этом случае снижается влияние теплового движения на изменение структуры и состояния нефтяной дисперсной системы. Важную роль в этих системах играют межмолекулярные взаимодействия, которые ответственны за структуру структурированных нефтяных дисперсных систем. Следует отметить важные особенности поведения нефтяных дисперсных систем при пониженных температурах. При понижении температуры нефтяной фракции уменьшается тепловое движение молекул жидкости, замедляется перемещение и конфигурационное изменение макромолекул в пачках и пакетах, начинаются процессы достройки пакетов и пачек углеводородами, кроме того может происходить создание новых пачек и пакетов из-за пересыщения раствора при понижении температуры. На поверхности частиц дисперсной фазы, состоящей в том числе из асфальтенов, смол, других включений, может происходить достройка отдельных их участков, с образованием усов , которые вырастают из мицеллярных структур. Происходит смыкание мицеллярных структур с созданием крупных агрегатов или глобул. Это приводит к снижению агрегативной и кинетической устойчивости нефтяных дисперсных систем. Указанные процессы можно описать аналитически с применением математического аппарата. [c.62]

    На устойчивость нефтяных эмульсий большое влияние оказывают дисперсность системы физико-химические свойства эмульгаторов, образующих на поверхности раздела фаз адсорбционные защитные оболочки температура смешивающихся жидкостей. [c.54]

    В большинстве случаев указанные процессы осуществляются в условиях повышенных температур. При этом сырьевые компоненты, различающиеся по природе и реакционной способности, в частности смолисто-асфальтеновые вещества, могут вступать в обратимые взаимодействия с образованием высококонденсированных смоло-асфальтеновых структур, либо формировать в системе коксовые частицы в виде карбенов и карбоидов. В последнем случае важнейшим параметром, характеризукз-щим склонность нефтяных сырьевых композиций к образованию при нагревании коксовых частиц, является термическая устойчивость. Дисперсная фаза нефтяной дисперсной системы, сформированная из высокомолекулярных соединений за счет межмолекулярных взаимодействий, оказывает значительное влияние на коллоиднохимические превращения, имеющие место при испарении. [c.102]


    По степени дисперсности углеродные компоненты наполнителя делят на коллоидно- и грубодисперсные системы. Коллоиднодисперсные системы обладают наиболее высокой удельной поверхностью благодаря малым размерам частиц (10—10 А). Малые размеры частиц и большая их удельная поверхность (20—. 300 м /см ) обеспечиваются специальными методами получения нефтяного углерода из газообразного и жидкого сырья при высоких температурах в газовой фазе. К таким нефтяным углеродам относят сажу. По принятому в нашей стране стандарту (ГОСТ 7885—77), сажи в зависимости от их влияния на прочностные свойства и износостойкость резины существенно различаются по активности. [c.80]

    Центральная роль в теории НДС отводится представлениям о существовании дисперсных частиц, или структурных единиц, различного типа. Особенностью последних, в отличие от дисперсных частиц классических дисперсных систем, является то, что они формируются в нефтяных системах, состоящих из большого числа компонентов, в том числе гомологов, относящихся к различным классам органических соединений с мало различающимися потенциалами межмолеку-лярного взаимодействия. Поэтому существование совокупности молекул с близкими потенциалами меж-молекулярного взаимодействия как единого целого в виде структурных единиц находится в сильной зависимости от внешних условий (температуры, давления, изменения состава дисперсионной среды и т. д.). Внутреннее строение структурных единиц, состоящих из ядра и примыкающего к нему адсорбционно-сольватного слоя, также имеет свои особенности, заключающиеся в условности границ раздела между ядром, адсорбционно-сольватным слоем и дисперсионной средой. Под влиянием внешних условий происходит экстремальное изменение размеров ядра и адсорбционно-сольватного слоя структурных единиц НДС, что проявляется через соответствующее экстремальное изменение макросвойств НДС и, несомненно, влияет на результаты их технологической переработки. Отметим, что в отличие от принятой в настоящее время технологии предлагаемая физико-химическая технология, обеспечивающая интенсификацию как недеструктивных, так и деструктивных технологичес- [c.7]

    Физико-механические и физико-химические свойства нефтяных битумов зависят от их состава. Увеличение содержания масел в битумах уменьшает их вязкость смолы увеличивают растворимость асфальтенов в маслах, являясь пептизаторами асфальтенов и превращая их в более дисперсные коллоидные системы. В зависимости от степени диспергирования асфальтенов в смолах повышается растяжимость битумов. Изменение состава битумов происходит под влиянием ряда факторов температуры и времени нагревания битума при его приготовлении, света, кислорода воздуха и минеральной среды. При этом происходит уменьшение количества масел и увеличение количества смол и асфальтенов. [c.80]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]


    Реологические свойства (структурно-механические свойства, температура застывания, вязкость и др.) НДС зависят в первую очередь от ее физического состояния, на которое оказывает влияние соотношение энергий межмолекулярного взаимодействия и теплового движения. Нефтяные дисперсные системы могут находиться в трех физических состояниях вязкотекучем (жидком), высокоэластическом и твердом. Способность к вязкому течению таких продуктов, как битумы, пеки, используют для пх внутризаводского транспортирования по трубопроводам. Для НДС характерно высокоэластическое состояние в интервале между температурами стеклования и вязко текучестн (температуры размягчения). [c.18]

    Следует отметить, что при изучении нефтяных дисперсных систем недостаточно рассмотрены вопросы взаимодействия фаз, процессы агрегирования и дезагрегирования, приводящие к прямым и обратным переходам от простых к сложным составам дисперсной фазы, оказывающим в конечном итоге решающее влияние на агрегативную и кинетическую устойчивость нефтяной дисперсной системы. Особенностью нового подхода к рассмотрению происходящих при этом явлений было определение принципиального различия между процессами депрессии температуры застывания и ингибирования парафиноотложения в нефтяных системах с точки зрения устойчивости системы к расслоению, под которой понимается, как уже указывалось, способность системы сохранять в объеме равномерное распределение во времени частиц дисперсной фазы. При рассмотрении процессов депрессии температуры застывания и ингибирования парафиноотложения в нефтяных дисперсных системах предполагалось, что депрессирование температуры застывания заключается в регулировании агрегативной устойчивости системы, а ингибирование парафиноотложения — в изменении склонности системы к расслоению,то есть кинетической устойчивости системы. [c.240]

    Работы по исследованию и регулированию свойств одной и той же нефтяной дисперсной системы при низких и высоких температурах убедительно показывают, что имеется определенная корреляция между характером изменения этих свойств под влиянием внешнего воздействия в столь разных условиях. Очевидно, что размеры ССЕ, формирующихся из высокомолекулярных соединений при низких температурах и пузырьков пара (газа) в услову1ЯХ перегонки, крекинга взаимосвязаны, несмотря на то, что сырье при нагреве проходит стадию, близкую к молекулярному раствору с практически полным разрушением физических ассоциатов. [c.13]

    Таким образом, на температуру застывания системы возможно оказывать наиболее полное целенаправленное влияние, если система первоначально находится в молекулярном состоянии. Ингибирование парафиноотложения в нефтяных системах можно проводить в любых условиях их существования, даже в турбулентном потоке, когда гидродинамически подвижными телами в виде обломков разрушенных структур являются достаточно крупные агрегативные комбинации. Как показывает накопленный феноменологический материал, подобные взаимодействия дисперсных частиц независимо от их агрегатного состояния возможно описать общими закономерностями в различных нефяных дисперсных системах. [c.241]

    На устойчивость тяжелых нефтяных фракций, особенно при повышенных температурах, сильное влияние оказывает присутствие асфальтенов, образующих нефтяные коллоидные микрогетерогенные системы. Высокая степень дисперсности асфальтенов создает избыток поверх1юстной энергии, вследствие чего такие системы термодинамически неустойчивы и стремятся к расслоению. При обычных условиях, ввиду достаточно высокой вязкости среды процесс расслоения происходит медленно. Повышение температуры способствует уменьшению вязкости и создас т благоприятные условия для коагуляции асфальтенов и выпадения их в виде осадка. [c.71]

    Происходящие при смешении структурные изменения определенным образом влияют на неаддитивные изменения физико-химических свойств нефтяных систем. Эти изменения носят, как правило, полиэкстремальный характер (см. рис. 3.52). Было показано, что аналогичные изменения происходят также при смешении некондиционных и высококачественных нефтей в условиях их перекачки и хранения. В этом случае происходит неаддитивное изменение таких физико-химических свойств нефтяных смесей, как кинематическая вязкость, поверхностное натяжение, плотность, оптические свойства, устойчивость, дисперсность и ряд других характеристик системы. Эти параметры при транспорте нефти по трубопроводу оказывают существенное влияние на ряд технико-экономических показателей, например таких, как объем перекачки и энергетические затраты. Установлено, что при смешении близких по своим свойствам нефтей показатели кинематической вязкости и температуры застывания возрастают и превышают расчетные значения. При смешении нефтей, резко различающихся по свойствам, но близких по количественному содержанию углеводородных групп, наблюдаются как положительные, так и отрицательные отклонения или равномерное [c.198]


Смотреть страницы где упоминается термин Нефтяные дисперсные системы влияние температуры: [c.49]   
Нефтяной углерод (1980) -- [ c.36 , c.37 ]

Нефтяной углерод (1980) -- [ c.36 , c.37 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Температура системы



© 2025 chem21.info Реклама на сайте