Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мицеллярная структура

    Маслорастворимые ПАВ в малополярных углеводородных средах образуют коллоидную мицеллярную структуру с фазо- [c.197]

    Характерная особенность структуры мицелл — это гидрофобное ядро, образованное углеводородными цепями молекул ПАВ, окруженное гидрофильным слоем их головных групп. Этим создается некоторое подобие мицеллярной структуры со структурой глобулярных белков (см. гл. I). Однако если белковая глобула — это относительно жесткое и весьма неоднородное образование, то мицелла ПАВ, напротив, носит псевдожидкий характер [1001 и образована совершенно идентичными молекулами ПАВ. Хотя эти различия и накладывают существенные ограничения на использование мицелл как моделей ферментов [1011, с другой стороны, именно благодаря простоте в построении мицелл в мицеллярных системах наиболее четко и достоверно могут быть прослежены такие эффекты, как стабилизация переходного состояния химической реакции за счет дополнительных сорбционных взаимодействий (или же сближение реагентов при их концентрировании), далее сдвиг р/Са реагирующих групп и влияние микросреды на скорость реакции. [c.115]


    Катионные ПАВ, полученные из аналогов в (—)-эфедрина, обнаруживают различную каталитическую эффективность при гидролизе д-нитрофениловых эфиров о- и ь-миндальной кислоты [165]. Для о ( — )-изомера ПАВ гидролиз рацемической смеси протекает медленнее, чем гидролиз энантиомеров можно предположить, что в каждую мицеллу включается больше одной молекулы субстрата. Следовательно, энантиомерная молекула субстрата нарушает мицеллярную структуру и образующийся комплекс [c.290]

    Растворы полноценных ПАВ являются коллоидными, так как им присущи основные признаки коллоидного состояния — коллоидная дисперсность и двухфазность. В отличие от обычны с коллоидных систем они термодинамически равновесны и образуются самопроизвольно, в связи с чем раньше их называли полуколлоид-ными растворами. Благодаря наличию мицеллярных структур растворы полноценных ПАВ обладают особыми свойствами. Они способны обеспечивать коллоидное растворение практически нерастворимых лиофобных веществ (солюбилизация). Например, водные растворы мыл способны солюбилизировать различные углеводороды. Солюбилизация происходит в результате перехода углеводородов во внутреннюю часть мицелл. Солюбилизация играет существенную роль в эмульсионной полимеризации и является одной из причин моющего действия полуколлоидов. [c.119]

    В этом случае снижается влияние теплового движения на изменение структуры и состояния нефтяной дисперсной системы. Важную роль в этих системах играют межмолекулярные взаимодействия, которые ответственны за структуру структурированных нефтяных дисперсных систем. Следует отметить важные особенности поведения нефтяных дисперсных систем при пониженных температурах. При понижении температуры нефтяной фракции уменьшается тепловое движение молекул жидкости, замедляется перемещение и конфигурационное изменение макромолекул в пачках и пакетах, начинаются процессы достройки пакетов и пачек углеводородами, кроме того может происходить создание новых пачек и пакетов из-за пересыщения раствора при понижении температуры. На поверхности частиц дисперсной фазы, состоящей в том числе из асфальтенов, смол, других включений, может происходить достройка отдельных их участков, с образованием усов , которые вырастают из мицеллярных структур. Происходит смыкание мицеллярных структур с созданием крупных агрегатов или глобул. Это приводит к снижению агрегативной и кинетической устойчивости нефтяных дисперсных систем. Указанные процессы можно описать аналитически с применением математического аппарата. [c.62]


    Гелеобразование может быть вызвано прибавлением к дисперсионной системе электролитов, увеличением концентрации золя, понижением температуры. С увеличением концентрации электролита снижается агрегативная устойчивость увеличение частичной концентрации золя ведет к росту числа контактов между частицами, с понижением температуры снижается интенсивность броуновского движе-кия и, следовательно, повышается устойчивость пространственных мицеллярных структур. При механическом воздействии, например при перемешивании, встряхивании, связи между частицами в коагуляционной сетке могут быть разрушены и гель превратится в текучий золь. Если оставить этот золь в покое, то через некоторое время связи самопроизвольно восстановятся и снова образуется нетекучий гель. Способность коагуляционных структур восстанавливаться после их механического разрушения называется тиксотропией (от греч. тиксо — прикосновение, тропе — изменение). [c.209]

    Сферические и пластинчатые мицеллы являются крайними типами мицеллярных структур, резко различающимися по степени асимметричности. Исследования строения мицеллярных растворов различными методами показывают, что возможны другие виды мицелл, приобретающих все более асимметричную форму по мере увеличения концентрации ПАВ. При этом каждый тип мицелл устойчиво существует [c.43]

    Процессы скачкообразных взаимопревращений мицеллярных структур находят отражение на кривых концентрационной зависимости различных свойств мицеллярных растворов ПАВ. Б частности, отчетливо обнаруживается переход от сферических мицелл к асимметричным несферическим [c.44]

    Солюбилизация олеофильных веществ приводит к более или менее глубокой перестройке мицеллярной структуры раствора. Характер и степень изменения мицеллярной структуры определяются типом мицелл, природой и концентрацией добавки. Систематические исследования этого вопроса принадлежат П. А. Ребиндеру и 3. Н. Маркиной с сотрудниками. [c.73]

    В области существования пластинчатых мицелл солюбилизация может приводить к глубоким изменениям мицеллярной структуры. На это указывают изменения реологических свойств растворов мыл в присутствии солюбилизированных веществ, подробно изученных П. А. Ребиндером и 3. Н. Маркиной с сотрудниками. [c.75]

    Н. Маркиной, перестройкой мицеллярной структуры раствора — превращением пластинчатых мицелл в меньшие по размеру симметричные сферические (или сфероидальные) [c.75]

    Солюбилизация является важным свойством растворов ПАВ, которое связано с их мицеллярной структурой. [c.412]

    Сохранение во всех состояниях мицеллярной структуры связано с высокой устойчивостью гидрофильной коллоидной системы. [c.175]

    Наряду с образованием мицеллярных структур в объеме раствора при концентрациях вблизи ККМ завершается образование адсорбционных слоев молекул ПАВ на границе раздела фаз в дисперсных системах в присутствии этих ПАВ (эмульсиях, суспензиях, пенах). Это обеспечивает стабилизующее действие растворов полноценных ПАВ и также является одной из причин моющего действия. Таким образом, практическое использование ПАВ обычно возможно лишь при концентрациях, превышающих ККМ. Величина ККМ опреде ляет также минимальный расход ПАВ, необходимый для обеспечения наиболее эффективного действия. [c.119]

    В водных средах Л образуют бислойные, гексагональные Н2< —ОСК или мицеллярные структуры В [c.599]

    Совокупность данных, полученных различными методами, приводит к следующим выводам 1) многообразные свойства растворов ПАВ не могут быть объяснены на основе признания только одного типа мицелл 2) мицеллярные структуры. абильны, и изменение условий (концентрации, температуры,"природы и количества введенных добавок) приводит к их взаимным переходам и превращениям. [c.40]

    В процессе этого перехода недавно были идентифицированы промежуточные структуры в составе ламеллы, называемые инверсными мицеллярными структурами (рис, 7,19) [14, 97, 98], [c.308]

    Развитие представлений о мицеллярной структуре и солюбилизации в водных растворах поверхностно-активных веществ привело к выводу, что полимеризация коллоидно-растворенного мономера начинается в мицеллах мыл и затем протекает в полимер-мономерных частицах [28—31]. Эти представления легли в основу математической модели и теории эмульсионной полимеризации, развитой Смитом и Эвартом [32, 33]. [c.147]

    Белки могут также вызывать изменения липидной фазы в бимолекулярном слое. Так, в присутствии цитохрома с выявлено [17] формирование инверсных мицеллярных структур в бимолекулярных липидных слоях, состоящих из фосфолипидов ФХ и КЛ. Этот белок ведет себя по отношению к КЛ так же, как двухвалентные катионы (см, 6.1.1). По данным этих авторов [17], цитохром с находится в инкапсулированном виде в мембране, внутри мицеллярной структуры (рис. 7,22), [c.312]

    Рис, 7,22. Образование инверсной мицеллярной структуры в присутствии цитохрома с, [c.312]


    В данной схеме первичным актом взаимодействия т молекул моющей присадки А с п элементарными частичками нераство-ренного продукта 8 является солюбилизация последнего, характеризуемая константой В результате солюбилизации образуются мицеллярные структуры типа AmSn , при этом имеется возможность последующего диспергирования нерастворимого продукта на Я более мелких частей. С течением времени происходят седиментация коллоидиорастворенных в масле продуктов и их осаждение на деталях двигателя в виде лака и нагара. Высокая константа скорости седиментации ( 2) обусловливает плохие моющие свойства масла. Одним из возможных и наиболее действенных путей предотвращения седиментации и повышения в связи с этим агрегативной устойчивости системы является солюбилизация и диспергирование нерастворимых в масле частиц. При этом нетрудно вычислить, что в первом приближении количество выпавших в осадок частиц будет изменять- [c.220]

    При наличии избытка углеводородов происходит образование капельной эмульсии, стабилизация которой достигается адсорбцией эмульгатора из водного раствора с образованием мономоле-кулярного адсорбционного слоя, препятствующего коалесценции капель. При этом на границе раздела фаз возможно формирование жидко-кристаллических структур (мезофаз), сопровождающееся скачкообразным повышением вязкости и одновременно повышением агрегативной устойчивости системы [24—27]. Считают, что избыток эмульгатора над адсорбционным слоем на поверхности капель образует мицеллярную структуру, обладающую вязкоэластичностью и эффектом самоотверждения. Подобное поведение эмульсионных систем объясняется квазиспонтанным образованием на границе раздела фаз углеводородный раствор — ПАВ термодинамически устойчивых ультрамикроэмульсий прямого и обратного типов, что, по-видимому, оказывает основное влияние на обеспечение агрегативной устойчивости таких систем. [c.146]

    Максимум иабухаемости клейковины имеет место при температуре 28—30 °С, а при 60—70 °С белковые вещества тесто.-хлеба дена-гурируются и свертываются, освобождая при этом воду, поглощенную при набухании. При повышении температуры до 50—60 °С крахмал муки интенсивно набухает и начинается клейстеризация крахмала и разрушение внутренней мицеллярной структуры. При температуре 50—70 °С протекают процессы клейстеризации крахмала и коагуляция белков, которые обусловливают переход тесто-хлеба в состояние мякиша. Повышение температуры до 60—70 °С приводит к резкому изменению консистенции — сгущению теста. Мякиш хлеба выдерживают в печи до температуры 92—98 °С в центре для придания ему необходимой упругости [24, 251. [c.50]

    Величина ККМ — важная коллоидно-химическая характеристика ПАВ. Она связана с олеофильно-гидрофильным балансом молекул ПАВ, характеризует их склонность к образованию мицеллярных структур и в известной степени служит мерой олеофильности этих структур. Величина ККМ зависит как от особенностей молекулярного строения ПАВ, так и от внешних факторов — температуры, давления, присутствия в растворе электролитов, полярных и неполярных органических веществ и т. д. Закономерности влияния различных факторов на ККМ и свойства мицелл представляют интерес и с точки зрения развития теории мицеллообразования, и в практическом отношении, поскольку их изучение открывает возможности регулирования коллоидных свойств растворов ПАВ путем направленного изменения их молекулярной структуры, а также за счет различных добавок. [c.58]

    Некоторые исследователи уже давно допускали, что каменные угли имеют коллоидный характер. Ряд углехимиков придерживается этого мнения и в настоящее время. В качестве доказательств правильности этих взглядов они приводят высокую адсорбционную способность углей по отношению к некоторым жидкостям и парам, их способность набухать и образовывать коллоидные растворы (например, в пиридине), а также некоторые их физические и оптические свойства. Представление об углях как коллоидных системах приводит к признанию их мицеллярной структуры. [c.212]

    При увеличении концентрации ПАВ мицелллярный раствор проходит ряд равновесных состояний, характеризуемых определенным числом агрегации, размером и формой мицелл. При достижении определенной концентрации сферические мицеллы начинают взаимодействовать между собой, что способствует их деформации. Мицеллы стремятся принять цилиндрическую, дискообразную, палочкообразную, пластинчатую форму (рис. VI. 5). Существование пластинчатых мицелл доказано Мак-Беном. При концентрациях примерно в 10—50 раз больше ККМ мицеллярная структура многих ПАВ резко изменяется. Молекулы принимают цепочечную ориентацию и вместе с молекулами растворителя способны образовывать жидкокристаллическую структуру. Последней стадией агрегации ири дальнейшем удалении воды из системы является образование гелеобразной структуры и твердого кристаллического ПАВ. [c.298]

    В присутствии солюбилизата раствор ПАВ сохраняет коллоидно-мицеллярную структуру и обладает всеми признаками лиофильных дисперсных систем. Это отличает солюбилизацию от внешне сходного с ней явления гидротроп и и — эффекта повышения растворимости олеофильных веществ в воде в присутствии некоторых добавок (гид-ротропных агентов), которыми могут служить водорастворимые полярные органические вещества (например, соли низкомолекулярных карбоновых кислот, фенолы, пиридин, алкилбензолсульфонаты с короткой алкильной цепью). Гид- [c.69]

    При добавлении к гелю электролита — пептизато-ра ионы его, сорбируясь на частицах, восстанавливают двойной электрический слой. Сцепление между частицами нарушается, мицеллярная структура разрушается и гель превращается в золь. [c.210]

    Характерная особенность пластинчатых мицелл — предельно высокая асимметричность их строения боковые грани мицелл образованы углеводородными цепями, граничащими с водной фазой, так что боковая поверхность мицелл обладает избытком межфазной энергии. Поэтому в растворах, содержащих пластинчатые мицеллы, возможно коагуляционное взаимодействие, при котором мицеллы контактируют боковыми гранями, образуя трехмерную структуру (пространственный каркас). Влияние таких пространственных мицеллярных структур проявляется в резком изменении структурно-механических свойств системы и солюбили- зирующей способности. [c.43]

    Солюбилизирующее действие растворов ПАВ начинает проявляться лишь при концентрациях, превышающих ККМ. Это указывает на прямую связь солюбилизирующей способности с наличием в растворе мицеллярных структур. Различными физическими методами показано, что в основе солюбилизирующего действия лежит поглощение молекул со-любилизата мицеллами ПАВ. (Поэтому солюбилизацию называют также внутримицеллярньш растворением.) [c.69]

    Характер концентрационной зависимости молярной солюбилизации может быть различным для разных конкретных систем. Например, при солюбилизации этилбензола в растворах калиевых мыл жирных кислот (рис. 22, а) величина линейно возрастает в широкой области концентраций. В случае же олеата натрия молярная солюбилизация остается постоянной в некоторой концентрационной области выше ККМ, после чего начинает резко возрастать при дальнейшем увеличении концентрации (рис. 22,6). Иногда обнаруживается ступенчатое повышение солюбилизирующей способности с концентрацией ПАВ (например, в случае биологически активного полуколлоида—холата натрия [26]). Но во всех случаях общей является тенденция к возрастанию солюбилизирующей способности при увеличении концентрации солюбилизатора, что связано с полидисперсным характером и лабильностью мицеллярных структур. [c.81]

    Траке в а Т. С., Маркина 3. Н. Влияние солюбилизации олеофиль- ных алифатических спиртов на мицеллярную структуру в системах олеат матрия — вода. — Там же, 1972, т. 34, № 6, с. 964—967. [c.214]

    Моющие вещества должны обладать всеми свойствами, характерными для поверхностно-активных веществ предшествующих трех групп они должны сильно понижать поверхностное натяжение воды на границе с воздухом, т. е. иметь высокую поверхностную активность, обнаруживая смачивающее и вместе с тем гидрофилизующее действие. Образуя пространственные мицеллярные структуры в объеме раствора и особенно в поверхностных слоях, моющие вещества должны быть не только диспергаторами, но и сильными стабилизаторами суспензий и эмульсий (эмульгаторами). Они должны вызывать также солюбилизацию углеводородных и вообще масляных загрязнений в ядрах мицелл, что составляет, по-видимому, важную слагающую в комплексе моющего действия. [c.73]

    Недостаток таких ПАВ выражается прежде всего в том, что несм т-ря на очень высокую поверхностную активность, онн неспособпы обеспечить достаточно большое понижение поверхностного натяжения, а поэтому и не обладают смачивающей способностью. Они не образуют мицеллярных структур ни в объеме раствора, ни в поверхностных адсорбционных слоях, не обнаруживая поэтому солюбилизирующего и стабилизующего свойств, а следовательно, не проявляя и моющего действия. [c.77]

    Срубодисперсные системы, непосредственно примыкающие к группе коллоидов, например суспензии, эмульсии и пены, также являются объектом изучения коллоидной химии, так как они во многом сходны с коллоидами с мицеллярной структурой и изучаются теми же методами, что и коллоидные системы. [c.299]

    Молекулярный вес целлюлозы лежит в пределах от 300000 до 500 000, что соответствует 3000—5000 структурных единиц Се в полимере. Данные рентгеноструктурного анализа указывают на то, что длина одной структурной ячейки вдоль оси полисахаридной цепи (период идентичности) близка к величине 10,25 А, вычисленной для длины одной целлобиозной единицы следовательно, полисахаридные цепи должны быть приблизительно прямыми, вытянутыми вдоль оси волокна целлюлозы. Тот факт, что в волокнах целлюлозы обнаруживаются кристаллические области, объясняется, по-видимому, наличием кристаллической структурной единицы, построенной из пакета (связки) параллельно ориентированных цепей (мицелл). Ширина мицеллярной единицы составляет около 60 А (100—200 целлюлозных цепей), длина—по крайней мере 200 А (200 глюкозных единиц). Значительная механическая прочность и химическая устойчивость приписыва ется мицеллярной структуре целлюлозы.  [c.565]

    Цитохром с связывается с поверхностью бимолекулярного слоя (А), что влечет латериальное разделение кардиолипидов (В), инвагинацию бимолекулярного слоя (С) и формирование инверсией мицеллярной структуры (О), в которой инкапсулируется белок (модель Круиффа с соавторами. 1981). [c.312]


Смотреть страницы где упоминается термин Мицеллярная структура: [c.171]    [c.470]    [c.155]    [c.161]    [c.162]    [c.8]    [c.44]    [c.74]    [c.443]    [c.278]    [c.217]    [c.371]   
Полиамиды (1958) -- [ c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Мицеллярный



© 2024 chem21.info Реклама на сайте