Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система устойчивые агрегативно

    Все двухфазные дисперсные системы делятся на две группы по величине удельной свободной межфазной энергии, измеряемой поверхностным натяжением а. К первой группе относятся лиофобные дисперсные системы — термодинамически агрегативно неустойчивые, характеризующиеся некоторым временем существования, с относительно высоким межфазным натяжением а большим граничного значения а . Ко второй группе относятся лиофильные дисперсные системы — термодинамически устойчивые, самопроизвольно образующиеся эмульсии со значением межфазной поверхностной энергии, меньшим граничного значения а ,. [c.15]


    Связь эффективности соударений с потенциальным барьером при коагуляции была показана Н. А. Фуксом. Если Л значительно больше квТ, то скорость коагуляции приближается к нулю, и система окажется агрегативно устойчивой. В теории, развитой Н. А. Фуксом, используется представление о коэффициенте замедления Ш, который показывает, во сколько раз константа скорости медленной коагуляции меньше константы скорости быстрой коагуляции. Учитывая соотношение (VI.20), получи.м  [c.326]

    Из коллоидной химии известно, что любая дисперсная система обладает агрегативной и кинетической устойчивостью, которые, в свою очередь, зависят от наличия факторов стабилизации и дестабилизации дисперсной системы. Наличие и действие указанных факторов определяется физикохимическими и электрокинетическими свойствами компонентов, входящих в дисперсную систему. Таким образом, целесообразно предварительно рассмотреть современное состояние и основные положения теории устойчивости коллоидных систем с жидкой дисперсионной средой во внешних электрических полях. [c.6]

    Вопросы устойчивости дисперсных систем занимают центральное место в коллоидной химии, поскольку основной класс коллоидных систем — лиофобные коллоиды — термодинамически нестабильны, т. е. склонны к коагуляции. Коагуляция представляет собой процесс слипания (или слияния) частиц дисперсной фазы при потере системой агрегативной устойчивости. Придание системам устойчивости требует специальных методов стабилизации. Только при таких условиях возможно получение и использование многих ценных материалов, продуктов и других изделий, в частности лекарственных препаратов, аэрозольных средств и т. д. [c.424]

    Проф. Н. П. Песков ввел в науку о коллоидных системах понятия об агрегативной и молекулярно-кинетической устойчивости. Агрегативная устойчивость зависит от способности системы в той или иной мере сохранять степень дисперсности образующих ее мицелл, кинетическая устойчивость зависит от способности диспергированных частиц, не меняя степени своей дисперсности, противостоять действию силы тяжести или центробежной силы, стремящихся [c.220]

    Лиофильные золи — термодинамически устойчивые системы. Их агрегативная устойчивость не связана с наличием стабилизатора. Поверхностный слой М. в таких системах образован лиофильными группами молекул вещества самой дисперсной фазы. Коллоидные частицы лиофильных золей интенсивно взаимодействуют с окружающей жидкостью и межфазная свободная энергия чрезвычайно мала. Лиофильные золи образуются в результате самопроизвольного диспергирования твердых тел или жидкостей под влиянием теплового движения и не разрушаются со временем при сохранении условий их возникновения. Таковы, напр., системы типа критич. эмульсий, возникающих вблизи критич. темп-ры смешения двух жидкостей, водные дисперсии бентонитовых глин, коллоидные дисперсии мыл и синтетич. моющих веществ, а также нек-рых органич. пигментов и красителей. [c.128]


    Рассматривая зависимость компонентов движущей силы от к, замечаем, что для работы силы отталкивания она имеет экспоненциальный характер, для работы силы притяжения — степенной, третий член вовсе не зависит от к. При к->-0 работа силы отталкивания стремится к постоянной величине, тогда как работа силы притяжения стремится к бесконечности. Следовательно, на малых расстояниях преобладает притяжение. На больших расстояниях также преобладает притяжение, поскольку степенная функция убывает значительно медленнее, чем экспонента. Только на средних расстояниях может преобладать отталкивание при малых значениях параметра Дебая (при больших в сильных растворах электролитов силы отталкивания малы) [27]. На этих средних расстояниях, где из энергий взаимодействия преобладает работа силы отталкивания, вопрос об агрегации решает связь с третьим слагаемым. Если оно меньше по величине работы силы отталкивания на этих расстояниях, то система становится агрегативно устойчивой (т. е. частицы сближаются до расстояния к, но не могут преодолеть сил отталкивания и расходятся без взаимодействия), если больше, то агрегация возможна. [c.86]

    Наряду с маслом и загустителем в консистентные смазки в относительно небольших количествах вводят вещества, выполняющие разнообразные функции. Обязательным компонентом смазок являются стабилизаторы — вещества, предотвращающие отделение масла от загустителя и обеспечивающие образование стабильной системы. Как и в любой дисперсной системе, обладающей агрегативной устойчивостью, роль стабилизатора дисперсии выполняет компонент, который, адсорбируясь на частицах дисперсной фазы, препятствует их слипанию. В смазках могут быть стабилизаторы органического и неорганического происхождения вода, щелочи, высоко- и низкомолекулярные органические кислоты и их соли, спирты, эфиры, фенольные соединения, амины и другие поверхностно-активные вещества, действие которых рассматривалось в гл. П1 и X. [c.197]

    Коагуляция является процессом, проходящим в термодинамически неустойчивых (лиофобных) дисперсных системах. Об агрегативной устойчивости таких систем судят по скорости коагуляции. Скорость коагуляции в дисперсных системах может быть самой различной. Некоторые системы коагулируют в течение нескольких секунд после их получения, а другие — устойчивы в течение суток, месяцев, а иногда и лет. [c.278]

    Коагуляция может протекать настолько медленно, что свойства системы остаются неизменными в течение длительного промежутка времени, исчисляемого иногда даже годами. Такие системы называются агрегативно устойчивыми. [c.135]

    Приведенные закономерности хорошо согласуются с поведением гидрофобных золей. Если частицы золя имеют высокий электрический потенциал и достаточной толщины диффузный слой, то при перекрывании ДЭС двух частиц энергия электростатического отталкивания преобладает над энергией межмолекулярного притяжения. Возникает энергетический барьер, препятствующий слипанию частиц. Сблизившиеся частицы вновь отдаляются друг от друга. Следовательно, система является агрегативно устойчивой (см. рис. 27.2,6). Сжатие диффузного слоя, например при добавлении электролитов, приводит к тому, что расстояние к (см. рис. 27.2, а) между твердыми частицами оказывается очень малым. На этом расстоянии энергия притяжения значительна и преобладает над энергией отталкивания. При таких условиях энергетический барьер очень мал и система агрегативно неустойчива, поэтому золь коагулирует (см. рис. 27.2, в). [c.429]

    Процессы, способствующие лиофилизации, т. е. усилению сольватации коллоидных частиц, повышают устойчивость золей. Например, природные глинистые минералы при смачивании водой настолько интенсивно сольватируют-ся водой, что распадаются на отдельные частички, образуя довольно устойчивые агрегативно системы. Лиофилизацию поверхности можно вызвать адсорбцией на ней поверхностно-активных веществ. Экспериментально установлено, что в присутствии поверхностно-активных веществ резко повышается порог коагуляции. [c.110]

    Выше мы видели, что термодинамическая неустойчивость дисперсных и коллоидных систем выражается в самопроизвольном укрупнении частиц — коагуляции и коалесценции. Однако скорость коагуляции может быть различной. Если система обладает большим избытком свободной энергии на границе раздела фаз, т. е. и поверхностное. натяжение а и площадь S поверхности раздела фаз достаточно велики, то коагуляция идет с большой скоростью. Такие системы называют агрегативно неустойчивыми. Но иногда в колЛоиде с такой же степенью дисперсности коагуляция идет очень медленно, практически незаметно. В таких системах, называемых агрегативно устойчивыми, очевидно, поверхностное натяжение на границе фаз невелико. Отсюда можно сделать вывод о том, что важный фактор получения устойчивых коллоидных систем — уменьшение поверхностной энергии за счет адсорбции поверхностноактивных веществ на коллоидных частицах. [c.55]


    Другим основным фактором устойчивости неорганических гидрозолей является потенциал поверхности, удерживающий вокруг коллоидных частиц диффузный слой ионов. Ионы этого слоя гидратированы и создают вокруг частиц гидратные оболочки, которые заслоняют (экранируют) частицы от действия молекулярных сил сцепления и стабилизуют коллоидную систему. Если она не гидрозоль, а органозоль, ее стабилизация осуществляется главным образом за счет оболочек дисперсионной среды (сольватных оболочек,) удерживаемых вокруг частиц адсорбционными силами. Однако наличие одних только сольватных оболочек из молекул среды еще недостаточно для придания гетерогенной системе значительной агрегативной устойчивости. Необходим третий компонент — стабилизатор в виде электролита (полиэлектролита). Его роль заключается, во-первых, в понижении общей поверхностной энергии системы за счет адсорбции ионов и, во-вторых, в создании защитных ионно-сольватных слоев в составе каждой мицеллы (см. гл. V). [c.130]

    Коллоидная химия — это физико-химия гетерогенных высокодисперсных систем и-высокомолекулярных систем. Коллоидные системы имеют чрезвычайно большое биологическое и народнохозяйственное значение. Гетерогенные высокодисперсные системы обладают агрегативной устойчивостью только в присутствии стабилизатора (ионного или молекулярного) растворы высокомолекулярных веществ являются термодинамически устойчивыми молекулярными гомогенными системами. По структуре частиц системы первого рода состоят из осколков трехмерных и двухмерных кристаллических и аморфных тел, образующих в инертной среде поверхности раздела фаз они получаются методами диспергации и конденсации-агрегации к ним относятся, например, гидрозоли металлов, металлоидов, гидроокисей и сульфидов металлов, дисперсии высокополимеров. [c.27]

    Выше мы видели, что термодинамическая неустойчивость дисперсных и коллоидных систем выражается в самопроизвольном укрупнении частиц — коагуляции или коалесценции. Однако скорость коагуляции может быть различной. Если система обладает большим избытком свободной энергии на границе раздела фаз, т. е. и поверхностное натяжение о и площадь 5 поверхности раздела фаз достаточно велики, то коагуляция идет с большой скоростью. Такие системы называют агрегативно неустойчивыми. Но иногда в коллоиде с такой же степенью дисперсности коагуляция идет очень медленно, практически незаметно. В таких системах, называемых агрегативно устойчивыми, очевидно, поверхностное натяжение на границе фаз невелико. Отсюда можно [c.54]

    Наибольшие положительные значения -потенциала соответствуют концентрации присадок 0,1%, т.е. той области, в которой происходит образование мицелл, и система является агрегативно устойчивой. Во всех исследованных системах, начиная с этой концентрации присадок, 1 -потенциал уменьшается и при концентрации 2% становится близким к нулю. Такое снижение -потенциала диспергированных частиц объясняется уменьшением толщины диффузного слоя. Следовательно, и эти исследования подтвердили влияние ПАВ на радиусы сольватных оболочек в надмолекулярных структурах твердых углеводородов. [c.126]

    В этом смысле коллоидные дисперсные системы являются необратимыми системами. Таковы основные черты первого типа коллоидных систем, которые характеризуются, по Пескову, как гетерогенные высокодисперсные системы, обладающие агрегативной устойчивостью только в присутствии стабилизатора. [c.15]

    При седиментации суспензий могут наблюдаться два различных случая. В одном случае каждая частица оседает отдельно, не сцепляясь с другими оседание происходит медленно. Такая дисперсная система называется агрегативно устойчивой. Возможен и такой случай, когда частицы суспензии коагулируют, сцепляются друг с другом под действием молекулярных сил и оседают в виде целых хлопьев оседание проходит очень быстро. Такие системы носят название агрегативно неустойчивых. [c.31]

    Таковы основные черты первого типа коллоидных систем, которые характеризуются, по Пескову, как гетерогенные высокодисперсные системы, обладающие агрегативной устойчивостью только в присутствии стабилизатора. [c.14]

    Гетерогенные высокодисперсные системы обладают агрегативной устойчивостью только в присутствии стабилизатора (ионного или молекулярного) растворы высокомолекулярных веществ являются термодинамически устойчивыми молекулярными гомогенными системами. [c.24]

    Эмульсии, подобно золям, относятся к системам гетерогенным агрегативно малоустойчивым степень дисперсности эмульсий более низкая, чем в обычных коллоидных растворах. Так, например, размеры частиц жира в коровьем молоке составляют в среднем 5 10 см. Устойчивость эмульсий с частицами столь большого размера обусловлена в первую очередь образованием механически прочных пленок на поверхности раздела фаз. [c.379]

    Химическое строение поверхности пигментных частиц определяет их коллоидно-химическое поведение в красочных системах (диспергируемость, агрегативную устойчивость), адсорбционные свойства и взаимодействие с пленкообразователем в красочных системах и в покрытиях, а также основные пигментные характеристики (цвет, фотохимическая активность, пассивирующее действие антикоррозионных пигментов). Поэтому технические свойства пигментов и содержащих их красочных систем и покрытий зависят не только от природы пигмента, но и от метода его получения, выделения из реакционной среды и последующей обработки, а иногда и от условий хранения. [c.34]

    В коллоидных системах различают два вида устойчивости— агрегативную (см. гл. VI 1) и седи-ментационную (см. гл. VIII 6). [c.202]

    Вероятным теоретическим 1юдтверждением обнаруженных фактов может явиться следующее. В процессе перегонки при увеличении температуры системы существенным во,здействиям подвергаются в числе прочих высокомолекулярные парафиновые углеводороды и смолисто-асфальтеновые соединения. По мере удаления легких углеводородов происходит накопление в остатке более высокомолекулярных соединений, которые при достижении некоторых пороговых концентраций начинают интенсивно взаимодействовать с образованием агрегативных комбинаций, трансформирующихся непрерывно с изменением температуры и состава перегоняемого остатка. Некоторые агрегативные комбинации могут, однако, проявлять значительную термическую устойчивость. Агрегативные комбинации могут содержать в окклюдированном виде часть относительно легких углеводородов в условиях повышенных температур. Подобные превращения в нефтяной системе оказывают существенное влияние на процесс ее кипения, проявляющееся, например, в тормозящем действии на выход той или иной фракции, необходимости большего количе- [c.197]

    В свое время были сделаны попытки трактовать агрегативную устойчивость лиофобных коллоидных систем с позиций термодинамики. Ряд авторов (например, Марх), учитывая, с одной стороны, положительную свободную энергию поверхности раздела и, с другой стороны, понижение свободной энергии в результате образования на частицах двойного электрического слоя, а также энтропию системы пытались определить условия, при которых фактор, способствующий коагуляции, уравновешивается противодействующим фактором, и поэтому коллоидная система является агрегативно устойчивой. Однако все эти попытки, за исключением специальных случаев (см. гл. УП1), кончились неудачей, так как эти авторы не учитывали, что при слипании частиц поверхность раздела частица — дисперсионная среда существенно не меняется (см. гл, I) [c.260]

    Дисперсная система, устойчивая в отношении коагуляции, может быть малоустойчивой в отношении гетерокоагуляции. В случае лиофобных коллоидов это следует из теории гетерокоагуляции Дерягина, согласно которой взаимодействие частиц определяется меньшим из значений поверхностных потенциалов частиц. Следовательно, как бы ни был высок потен-диал частиц дисперсии, они будут прилипать к поверхности, если последняя слабо заряжена. Эта неустойчивость дисперсии по отношению к адагуляции не привлекает внимания в традиционном коллоидно-химическом эксперименте (где частицы могут прилипать к внутренней поверхности содержащего дисперсию сосуда), поскольку он завершается после формирования первого монослоя частиц. Формирование второго слоя практически невозможно, если система устойчива в отношении меж-частичных взаимодействий, т. е. агрегативно устойчива. Однако прилипание можно неограниченно усилить, если обеспечить контакт частиц с достаточно большой поверхностью, даже при мо-нослойной их локализации. [c.369]

    Коллоидным системам свойственна агрегативная неустойчивость, преодолеваемая лишь путем адсорбции ионов или молекул на частицах дисперсной фазы. Таким образом, агрегативно-устойчивая коллоидная система, в принципе, должна состоять из трех компонентов диспергированных чаетиц, среды и стабилизатора. [c.294]

    Как видно из определения, к коллоидным системам относятся два основных типа систем. Первому типу — гетерогенным высокодисперсным системам — соответствует первый указанный ранее тип укрупнения частиц путем образования трехмерных и двухмерных структур в инертной среде он характеризуется наличием развитой поверхности раздела. Условие высокодисперсности отделяет коллоидные системы от грубых, быстро оседаюпщх суспензий и порошков с низкой кинетической устойчивостью. Ввиду наличия частиц со свободной поверхностной энергией, коллоидные дисперсные системы являются термодинамически неустойчивыми, потому что стремление этой энергии к уменьшению приводит к агрегации частиц (см. четвертую главу). Частицы не слипаются, т. е. оказываются агрега-тивно устойчивыми лишь при условии, что на их поверхности за счет свободной поверхностной энергии адсорбируются молекулы или ионы третьего компонента системы или стабилизатора. Однако агрегативная устойчивость этих частиц имеет индуцированный характер, и по истечении достаточного промежутка времени (путем рекристаллизации и др.) процесс слипания неизбежно наступает. В этом смысле коллоидные дисперсные системы являются необратимыми системами. Таковы основные черты первого типа коллоидных систем, которые характеризуются, по Пескову, как гетерогенные высокодисперсные системы, обладающие агрегативной устойчивостью только в присутствии стабилизатора. [c.15]

    В предыдущих главах была рассмотрена большая группа коллоидных систем, обладающих развитой физической поверхностью раздела и значительным избытком свободной поверхностной энергии, стремление которой к уменьшению делает эти системы термодинамически неустойчивыми. Благодаря избытку поверхностной энергии, в таких системах образуются ионные и молекулярные адсорбционные слои, которые и обобщают агрегативную устойчивость коллоидным частицам. Легко видеть, что природа устойчивости этих систем резко отличается от устойчивости обычных истинных растворов низколюлекулярных веществ, например, сахара. Хотя каждая молекула сахара в растворе прочно связана, примерно, с 12—15 молекулами воды, нельзя говорить, что молекула сахара окружена адсорбционносольватным слоем воды, так как она не имеет поверхности раздела и не образует фазы водный раствор сахара является однофазной системой. Устойчивость раствора сахара определяется тем, что связь молекул сахара с водой сильнее их взаимной связи в решетке сахара (энергетический фактор) и что растворенные молекулы сахара равномерно распределены во всем объеме раствора (энтропийный фактор). Термодинамически это означает, что состояние раствора сахара, при постоянном давлении и температуре, может быть полностью описано изменением двух функций — теплосодержания или энтальпии ДЯ и энтропии Д5  [c.169]

    Высокоразвитая поверхность коллоидных систем обусловливает большой избыток свободной поверхностной энергии, что делает эти системы термодинамически неустойчивыми и стремящимися к уменьшению межфазной энергии. Это вызывает нарушение агрега-тивной устойчивости коллоидной системы, уменьшение степени дисперсности и объединение (слипание) частиц под действием молекулярных сил в агрегаты, т. е. происходит коагуляция, а система называется агрегативно неустойчивой. [c.156]

    Аэрозольная система всегда принципиально неустойчива и не может сохраняться в неизменном состоянии [47]. Особенностью аэрозолей является наличие у них лишь кинетической устойчивости. Агрегативной устойчивости они лишены полностью, и каждое соприкосновение их частиц или частицы и стенки приводит к слипанию (коагуляции). В отличие от коллоидных растворов, в аэрозолях отсутствуют силы, препятствующие сцеплению частиц между собой и с макроскопическими телами (например, со стенками сосуда) при соударениях. Разрушение аэрозолей происходит путем седиментации— оседания под действием силы тяжести, диффузии к стенкам, коагуляции и (в случае аэрозолей из летучих ве-ществ) испарения частиц. Старение и исчезновение аэрозоль-X I ной системы может быть вызвано также рассеянием ее либо под действием воздушных течений, либо вследствие одноимен-сной зарядки ее частиц. [c.17]

    Совокупность экспериментальных данных позволяет объяснить механизм явления самоудлинения следующим образом. При высушивании аморфного полимера, деформированного в адсорбционно-активной среде, в условиях, в которых его усадка предотвращена, происходит коагуляция первичных фибрилл так, как это показано на схеме (рис. 3.10). Очевично, что в этих условиях полимер и после коагуляции сохраняет большую межфазную поверхность, обусловливающую его термодинамическую неустойчивость. Однако высокий модуль стеклообразной Матрицы, которая является своеобразным каркасом, способным запасать значительные напряжения, препятствует дальнейшей коагуляции высокодисперсного масериала микротрещин, придавая системе некоторую агрегативную устойчивость. [c.84]

    Условие высокодисперсности отделяет коллоидные системы от грубых, быстро оседающих суспензий и порошков с низкой кинетической устойчивостью. Ввиду наличия частиц со свободной поверхностной энергией коллоидные дисперсные системы являются термодинамически неустойчивыми, потому что стремление этой энергии к уменьшению приводит к агрегации частиц. Частицы не слипаются, т. е. системы оказываются агрегативно устойчивыми лишь при условии, если на их поверхности за счет свободной поверхностной энергии адсорбируются молекулы или ионы третьего компонента системы или стабилизатора. Однако агрегативная устойчивость этих [c.13]


Смотреть страницы где упоминается термин Система устойчивые агрегативно: [c.283]    [c.129]    [c.151]    [c.348]    [c.237]    [c.31]    [c.335]    [c.129]    [c.335]    [c.325]    [c.6]    [c.56]    [c.8]   
Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.317 ]




ПОИСК





Смотрите так же термины и статьи:

Агрегативная и кинетическая устойчивость гетерогенных дисперсных систем

Агрегативная устойчивость дисперсных систем

Агрегативная устойчивость коллоидных систем. Коагуляция

Взаимодействие частиц и агрегативная устойчивость дисперсных систем с жидкой дисперсионной средой

Вязкость жидких агрегативно устойчивых дисперсных систем

Лиофобные системы устойчивость агрегативная сли индуцированная сольватация частиц

Понятие о коллоидных системах. Агрегативная и седиментационная устойчивость

Седиментационная и агрегативная устойчивость дисперсных систем. Роль теплового движения

Система устойчивая

Системы устойчивость

Устойчивость агрегативная

Устойчивость и коагуляция коллоидных растворов и суспензий Кинетическая и агрегативная устойчивость дисперсных систем

Устойчивость коллоидных систем агрегативная

Факторы агрегативной устойчивости коллоидных систем

Электрические свойства и агрегативная устойчивость коллоидных систем



© 2025 chem21.info Реклама на сайте