Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий, изотопы выделение

    Изотопы (Ту, =65 дней) и (7 1/,= 17 час.) образуются из короткоживущих изотопов криптона, рубидия, стронция и иттрия [213]. Выделение 2г следует производить не ранее, чем через 1,75 часа после окончания облучения (это время равно девяти периодам полураспада материнского V ). Выделение и очистку 2г следует проводить сразу после облучения. [c.415]


    Селективное выделение рубидия из радиоактивных растворов представляет самостоятельный практический интерес из-за стабильности его изотопов. Из всех известных сырьевых источников рубидия радиоактивные растворы являются наиболее богатыми (содержание рубидия достигает 0,15 з/л), не требующими какого-либо предварительного химического концентрирования. [c.320]

    Возникновение идеологии фотоионизационного метода естественно совпадает со временем интенсивного осмысливания новых возможностей в науке и технике, предоставляемых лазерным излучением. Первые теоретические рассмотрения методов разделения изотопов с помощью лазерного излучения, по-видимому, относятся к концу 60-х годов [3, 4, 5]. Затем следуют модельные эксперименты по целенаправленной, но не селективной фотоионизации атомов рубидия [6], и наконец демонстрационные эксперименты по выделению выполненные одновременно и независимо сразу в нескольких лабораториях [7, 8]. [c.375]

    Извлечение рубидия и цезия из радиоактивных отходов. В связи с развитием ядерной энергетики переработка радиоактивных отходов энергетических реакторов превратилась в серьезную проблему. Появилось много исследований по выделению ряда элементов из растворов низких концентраций, что объясняется как необходимостью очистки сточных вод от продуктов деления перед сбросом, так и самостоятельным интересом к получению некоторых соединений и препаратов. Примером может служить получение у-источников, главным образом на основе s-137, которые используются в различных отраслях народного хозяйства [10]. Среди радиоактивных отходов s-137 — долгоживущий радиоактивный изотоп — занимает особое место. Он выделяется при реакции деления в относительно большом количестве и определяет активность продуктов деления после длительного периода их охлаждения . Поэтому выделение цезия (и стронция) из радиоактивных отходов — решающий вопрос для безопасности длительного хранения отходов. Селективное выделение рубидия из радиоактивных растворов представляет практический интерес из-за стабильности его изотопов - [c.131]

    Максимальная температура, при которой может быть использована вольфрамовая нить, равна примерно 2700° К- При этой температуре можно обнаружить вольфрам в ионном пучке, и интенсивность его ионного тока достигает 10 а [1561. Интенсивность этого пучка может быть использована для контроля температуры нити и поддержания ее на максимально допустимом уровне. Источники с поверхностной ионизацией обладают преимуществами по сравнению с печными [1562] при решении большинства проблем, касающихся анализа твердых неорганических соединений. Основное их преимущество состоит в отсутствии ионизирующего электронного луча, который мог бы ионизировать остаточные газы и давать интенсивные фоновые линии в спектре. Это особенно существенно потому, что введение твердых образцов в вакуумную систему представляет собой сложную задачу, так как, несмотря на использование вакуумного шлюза, остаточное давление в камере обычно несколько выше, чем в источниках, работающих при комнатной температуре, вследствие начинающегося при включении обогрева выделения газов. Держатель нити конструктивно прост и дешев, и нить легко заменяется при переходе от одного образца к другому. Это исключает возможность загрязнения одного образца другим. Еще одно достоинство этого типа источника состоит в том, что для анализа требуется очень малое количество образца (типичная загрузка 10 мкг мм при площади нити Ъмм ). Возможно анализировать и меньшие количества для большинства веществ достаточно 1 мкг в отдельных случаях, как, например, при анализе рубидия, достаточно 10" г образца [911]. Серьезный недостаток метода состоит в возможности фракционирования изотопов при введении в источник легких элементов (гл. 3) этот недостаток можно преодолеть, если подвергать ионизации комбинации из нескольких атомов или применять источник с несколькими нитями (применять горячую нить). Изотопное фракционирование может быть вызвано также диффузией образца в нить. Это не наблюдается и вряд ли имеет большое значение, так как энергия активации гораздо больше для диффузии, чем для испарения. [c.126]


    Концентрирование цезия-137, так же, как и стронция-90, имеет своей целью не только наиболее полное извлечение нужного изотопа, но и максимально возможное удаление сопутствующих ему примесей. Присутствие в природных водах преобладающих макроколичеств натрия, калия, а также микроконцентраций рубидия, близких по свойствам к цезию, осложняет эту задачу. Для одновременного выделения из той же пробы БОДЫ цезия-137 нами было использовано ферроцианид-ное осаждение, успешно примененное авторами работ [1—4]. Известно, что образование смешанных ферроцианидов принадлежит к числу наиболее чувствительных реакций на цезий. Соосаждение цезия с ферроцианидами тяжелых металлов позволяет отделить его от больших количеств сопутствующих щелочных элементов, з первую очередь натрия, калия, а также КЬ и ЫН, . [c.164]

    Ядра атомов элементов 1А-группы характеризуются нечетными величинами заряда, а потому число устойчивых изотопов у них невелико (табл. 1). Натрий и цезий — моноизотопные элементы у лития и калия в природной смеси по два устойчивых изотопа. Среди природных изотопов калия и рубидия имеется по одному радиоактивному изотопу с относительно большими периодами полураспада (1,32 х X 10 и 5-10 лет). У франция устойчивых изотопов нет в настоящее время известны 8 радиоактивных изотопов его с малыми периодами полураспада. Наиболее устойчивым из них является изотоп 8fFг Т /2=2 мин), который впервые был выделен в 1939 г. [c.34]

    Отклонения от закона постоянства изотопного состава в большинстве случаев легко пояснимы. Одна из причин отклонения — радиоактивный распад естественных радиоактивных элементов и ядерные реакции, вызываемые элементарными частицами, выделяющимися при этом распаде. Так, например, в различных свинцовых месторождениях преобладает либо РЬ , либо РЬ . Дело в том, что свинец является конечным продуктом радиоактивного распада двух естественных радиоактивных элементов урана и тория, Урановый свинец имеет массовое число 206, ториевый — 208. Стронций, выделенный из слюды, которая содержит рубидий, на 100% состоит из изотопа с массой 87. В то же время содержание во всех прочих природных соединениях этого элемента немногим больше 7%. Причина этой аномалии — в естественйой радиоактивности НЬ , Выбрасывая р-частицу, последний превращается в 5г . [c.24]

    Примером применения метода адсорбционного соосаждения может служить выделение радиоактивного изотопа из облученного дейтронами хлорида рубидия. К слабо солянокислому раствору мишени прибавляют хлорное железо, и гидроокись железа осаждают в нагретом растворе аммиаком и углекислым аммонием. Осадок отде.г1яют центрифугированием или фильтрованием, промывают и растворяют в минимальном объеме 6 н. соляной кислоты. Железо из полученного раствора экстрагируют, эфиром. В растворе радиоактивного изотопа остается ничтожное количество иона железа. [c.243]

    Внутренняя адсорбция. Рассмотрим третий тип соосаждения, который был выделен Ханом ([ ], стр. 75) в особую группу. Он обнаружил, что захват изотопов радия и изотопов свинца кристаллами сульфатов калия и рубидия зависит от присутствия в растворе других ионов, обладающих большой адсорбционной способностью. В табл. 78 приводятся значения ) при распределении изотопов радия и свинца между кристаллами К2504 и раствором 0.1 п. [2804 в присутствии переменных, но малых количеств ионов висмута и при Ь=20°. [c.250]

    М раствора той или другой кислоты. Выпавший белый кристаллический осадок быстро центрифугировался, промывался дважды холодной концентрированной соляной кислотой. Фильтрат декантировался и последние капли соляной кислоты тщательно отбирались пипеткой. Осадок фосфорновольфрамо-Бой кислоты растворялся л мл воды. Этот раствор, имеющий кислотность, меньшую 0,5 М по соляной кислоте, пропускался со скоростью 0,5 мл/мин через хроматографическую колонку, наполненную мелкозерненным катионитом дауэкс-50. Размеры слоя катионита следующие длина 10—25 мм и диаметр мм. При этом фосфорновольфрамовая кислота проходила через катионит не сорбируясь, а франций и цезий сорбировались полностью. Затем колонка тщательно промывалась 2 мл дистиллированной воды с той же скоростью. После промывки франций быстро десорбировался пропусканием 0,5 мл раствора концентрированной соляной кислоты со скоростью 0,2 мл/мин. Полученный раствор выпаривался для удаления избытка соляной кислоты, остаток растворялся в воде. Этот раствор использовался в опытах по изучению химии франция при помощи а-активного изотопа Раствор содержал свободный т носителя франций, не загрязненный какими-либо активностями, за исключением цезия, который образуется при делении. Рубидий в этом методе отделяется. Выделение франция выполнима за 25—30 мин. Дополнительные оныты показали, что вместо смолы дауэкс-50 может быть с успехом применена течественная смола КУ-2. [c.277]


    При распаде рубидий превращается в редкий изотоп стронция STSr. Последний был выделен почти в чистом виде в количестве нескольких миллиграммов из слюды, богатой рубидием, из которого стронций образовался на протяжении геологических эпох. [c.754]

    Принципиальные возможности использования цеолитов в качестве селективных ионообменников очевидны пз приведенных выше данных по ионообменным равновесиям и кинетике. Однако широко эти возможности пока не реализуются. Синтетические цеолиты из-за невысокой химической устойчивости могут найти ограниченное применение [7], в то время как высококремнистые дешевые природные цеолиты имеют широкие перспективы [74, 7.5]. Имеющиеся литературные данные свидетельствуют о том, что синтетические цеолиты с успехом могут быть использованы для разде.тения изотопов лития, а также смесей щелочных металлов, например рубидия и калия, рубидия и цезия, очистки цезия от рубидия, калия и натрия на цеолите X, а также рубидия от калия, натрия, цезия на цеолите А. Цеолит X позволяет осуществлять разделение стронция и кальция [29] в условиях, когда концентрация кальция в 400—500 раз превышает содержание стронция. Высокие селективность и емкость цеолита Л позволили осуществить в лабораторных л словиях выделение лтеди(П) пз продуктов гидрометаллургического производства на фоне 0,7. У раствора сульфата натрия при pH 4—4,5 [7Г)], а также хроматографическое разделение меди и никеля [25]. Показано, что прп-лгенение синтетических цеолитов вместо ионитов в противо-точных ионообменных установках зпачите.яьпо повышает эффективность процессов разделения [7]. [c.58]

    Осн. исследования посвящены неорг. химии и физ. химии. Его работы по изучению состава изо-поливольфраматов и р-ций их восстановления, получению химически чистого молибдата аммония и др. были использованы в 1920-х при организации отечественного произ-ва вольфрама и молибдена. Результаты работ по хлорированию оксидов бериллия, ниобия, тантала и др. элем. (1928—1934) нашли применение при организации произ-ва этих металлов. Осуществил (с 1938) цикл работ по химии цезия и рубидия, по изучению (с 1945) гетерополисоединений нептуния и плутония, по исследованию (с 1953) технеция и др. компонентов радиоактивных отходов атомной пром-сти. Исходя из представлений о водородной связи, предложил (1957) новую трактовку строения аквополи- и гетерополисоединений. Под его руководством проводились исследования по химии урана. Разрабатывал способы выделения и концентрирования радиоактивных изотопов, получения трансурановых элем, в необычных степенях окисления (Нр и др.). [c.417]


Смотреть страницы где упоминается термин Рубидий, изотопы выделение: [c.232]   
Радиохимия и химия ядерных процессов (1960) -- [ c.567 , c.568 ]




ПОИСК





Смотрите так же термины и статьи:

Рубидий



© 2025 chem21.info Реклама на сайте