Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы выделение одновременное с водородом

    Для производства водорода как в СССР, так и за рубежом развивается процесс каталитической конверсии углеводородного сырья с одновременным выделением чистого водорода из зоны реакции путем диффузии через селективно проницаемые мембраны, изготовленные из сплавов палладия с другими металлами. [c.247]


    Для протекания этой реакции на катодном участке должен одновременно происходить процесс восстановления, заключающийся приобретении электронов. При катодной реакции поглощаются электроны, поставляемые в процессе окисления. Анодная реакция не сможет протекать, если эти эле троны не будут поглощаться. Восстановление растворенного кислорода и выделение газообразного водорода в результате восстановления ионов водорода (в частности, из кислых растворов) относятся к двум самым обычным реакциям, протекающим при коррозии металлов в водных средах. Эти реакции могут быть представлены в виде [c.58]

    При этом на границе между металлом и раствором протекает стационарный процесс анодного растворения металла и происходит одновременное выделение газообразного водорода. В соответствии с уравнением (VIH, 367) скорость коррозии можно представить [c.402]

    В технологии электрохимических производств перенапряжение может оказаться как полезным, так и нежелательным. Например, при электролизе воды (растворов щелочи) для получения водорода катодное перенапряжение приводит к бесполезной затрате электрической работы. Если же цель технологического процесса — выделение металла, но одновременно в качестве побочного процесса может идти выделение водорода, то большое перенапряжение водорода полезно, так как оно, затрудняя выделение водорода, снижает бесполезный расход энергии на этот побочный процесс. Например, при электролизе щелочных растворов комплексных солей цинка на катоде должны разряжаться ионы водорода, а не цинка, так как равновесный потенциал водородного электрода менее отрицателен, чем цинкового. Но ионы гидроксония разряжаются на цинке с большим перенапряжением, т. е. при потенциале, гораздо более отрицательном, чем потенциал цинка. Поэтому из раствора при электролизе выделяется цинк. [c.297]

    Если же, например, целью технологического процесса является выделение металла, но одновременно в качестве побочного процесса может идти и выделение водорода, то большое перенапряжение водорода выгодно, так как оно, затрудняя выделение водорода, снижает бесполезный расход тока на этот побочный процесс. Так, при электролизе растворов цинковых солей на катоде должны в первую очередь разряжаться ионы водорода, а не ионы цинка, так как равновесный потенциал водородного электрода менее отрицателен, чем цинкового. Но вследствие того, что ионы Н разряжаются на цинке с большим перенапряжением, т. е. при потенциале гораздо более отрицательном, чем равновесный, фактически происходит разряд и выделение цинка. [c.238]


    Очень часто восстановление металла осложняется сопутствующим ему восстановлением других металлов (примесей) или водорода. Это явление имеет большое практическое значение. Вопросы электролитической рафинировки металлов (очистка от примесей), вопросы гальваностегии и многие Другие связаны с проблемой одновременного восстановления нескольких различных катионов. В качестве примера можно привести электролиз водных растворов солей цинка выделению цинка на катоде непременно сопутствует выделение водорода. [c.520]

    Нередко при растворении металлов под током наблюдается частичный переход металлической фазы в раствор, где частицы металла растворяются в соответствии с закономерностями, характерными для растворения металла в отсутствие тока. Это явление также может служить причиной отрицательного дифференц-эффекта. Переход частиц металла в раствор происходит как одновременно с разрушением и отслаиванием оксидных пленок, так и в отсутствие пленок в достаточно агрессивных средах, когда возможно сразу удаление в раствор агломератов, состоящих из нескольких атомов металла. Последующее взаимодействие частиц металла с раствором приводит к избыточному выделению водорода, что и является причиной отрицательного дифференц-эффекта. Представления о механическом разрушении металлов при растворении лежат в основе теории дезинтеграции металлов. [c.361]

    При хромировании (а в меньшей степени и при никелировании) не весь ток используется на осаждение металла. Одновременно выделяется водород. На основании ряда напряжений следовало бы ожидать, что металлы, стоящие перед водородом, вообще не должны выделяться из водных растворов, а напротив, должен был бы выделяться менее активный водород. Однако здесь, как и при анодном растворении металлов, катодное выделение водорода часто тормозится и наблюдается только при высоком напряжении. Это явление называют перенапряжением водорода, и оно особенно велико, например, на свинце. Благодаря этому обстоятельству может функционировать свинцовый аккумулятор. При зарядке аккумулятора вместо РЬОг на катоде должен бы возникать водород, но, благодаря перенапряжению, выделение водорода начинается тогда, когда аккумулятор почти полностью заряжен. [c.130]

    Восстановление ионов водорода (или молекул воды), а также растворенного кислорода ограничивает возможности восстановления других веществ. Вещества, кривая восстановления которых на электроде из металла, применяемого в качестве восстановителя, близка к кривой восстановления ионов водорода, восстанавливаются с одновременным выделением газообразного водорода. Окислители, для которых кривая восстановления на электроде из применяемого металла лежит влево от кривой восстановления ионов Н+ (или молекул Ог) на том же металле, не могут быть вообще восстановлены этим металлом. [c.226]

    Для выделения более активных, чем серебро, металлов, напрИ мер свинца, кадмия, цинка, надо применять ртутный или амальгамированный платиновый катод. Отложить эти металлы на обычном платиновом электроде, не выделяя одновременно водорода, невозможно. [c.520]

    Наиболее доказанным представляется механизм изомеризации олефинов, который включает начальное образование комплекса между олефином и металлом, последующее присоединение Н — М по двойной связи (через четырехцентровое переходное соединение) и появление 0-связи углерод — металл, а затем отщепление Н —М в противоположном направлении с выделением изомерного олефина. Доводы в пользу такого механизма вполне убедительны, особенно в отношении тяжелых переходных металлов. Однако в условиях, допускающих изомеризацию, переход металла к олефину при действии последнего на некоторые а-алкилы кобальта и железа не наблюдался. Был предложен альтернативный механизм, предусматривающий обмен аллильного водорода с водородом металла и одновременную миграцию двойной связи, а также получены доказательства [72] 1,3-сдвига водорода. [c.51]

    Рассмотрим систему, в которой протекают всего две параллельные электрохимические реакции — растворение металла и выделение водорода. Парциальные поляризационные кривые этих реакций представлены на рис. 190. Парциальные кривые не могут быть измерены методом поляризационных кривых, поскольку при поляризации электрода идут одновременно оба процесса. Поэтому получают суммарную поляризационную кривую 1 , В соответствии с уравнениями (69.1) и (69.2) [c.359]

    Основой электролитов хромирования является хромовая кислота с добавкой активирующих ионов, большей частью SO4 . При электролизе в таких растворах на катоде одновременно идут реакции восстановления шестивалентных ионов хрома до низшей валентности, выделение осадка металла, разряд ионов водорода. Анодный процесс сводится к выделению кислорода и частичному окислению образующихся в растворе ионов хрома низшей валентности. [c.149]


    К первому типу относятся ацетилениды, сохраняющие в молекуле тройную связь и образующиеся путем замещения одного или обоих водородных атомов ацетилена металлами или металлоорганическими радикалами. Эти соединения могут быть приготовлены или действием ацетилена на металл с одновременным выделением водорода, или действием ацетилена на металлоорганические соединения с одновременным выделением соответствующего водородного соединения, или, наконец, реакцией обмена между ацетиленидом и солью металла  [c.67]

    Одновременно с указанными протекает также реакция 2Н+ -Ь + 2е->Н2. Выделение металла с практически приемлемым выходом по току в данном случае возможно при условии, если разряд ионов водорода будет искусственно затруднен, тем более что перенапряжение водорода на хроме мало. Это достигается путем максимального повыщения pH. Однако уже при pH = 3 образуются гидроокись Сг(ОН)з и основные соли, сильно загрязняющие металл. [c.285]

    Полимеры и сополимеры хлористого винилидена обладают заметной стабильностью к действию солнечного света, но они нестабильны при температурах выше 100° С и желтеют при хранении. При более высоких температурах протекает термическая деструкция с выделением хлористого водорода. Этот процесс ускоряется под влиянием некоторых металлов, таких, как железо. Бойер предполагает, что отрыв молекулы хлористого водорода от полимерной цепи по закону случая приводит к образованию атома хлора и одновременно двойной связи. Этот атом хлора приобретает активность аллильного хлора, что облегчает отрыв другой молекулы хлористого водорода от цепи и возникновение другой двойной связи. В результате образуются полиеновые последовательности с чередующимися двойными связями. Длина последовательностей определяет интенсивность окраски полимера. Механизм инициирования процесса дегидрохлорирования объяснен неудовлетворительно. Возможно, что инициирование протекает по концевым ненасыщенным группам, образовавшимся при передаче цепи. Другими потенциально нестабильными местами являются третичные атомы углерода, присутствующие в цепи вследствие разветвлений, или кислородные мостики, или двойные связи, существование которых в полимерной цепи обусловлено выделением хлористого водорода Сообщалось, что сополимеризация со стабильным сомономером является эффективным средством увеличения теплостойкости или по крайней мере сводит до минимума окрашивание. Этилакрилат, входящий в цепь поливинилиденхлорида, блокирует автокаталитическое дегидрохлорирование и приводит к эффективному уменьшению длины полиеновых последовательностей, способствующих окрашиванию. Подобные сомономеры также снижают температуру размягчения полимера, уменьшая его термическое разложение при переработке. [c.422]

    При электролизе водных растворов катодный выход по току чаще всего определяется возможным выделением водорода одновременно с получаемым металлом. При электролизе обезвоженных расплавленных сред снижение выхода по току по сравнению с теоретическим обусловлено специфическими для расплавов причинами, вследствие которых выход по току в отдельных случаях может быть даже ниже, чем в водных растворах. [c.470]

    Наконец, в некоторых системах причиной отрицательного дифференц-эффекта служит образование при растворении металла ионов промежуточной степени окисления. Переход этих ионов в состояние устойчивой степени окисления осуществляется далее за счет химического взаимодействия с ионами Н+ или с молекулами НаО с выделением водорода. Возможно также протекание реакции диспропорциони-рования с одновременным образованием атомов металла, например, по уравнению реакции 2М+М-ЬМ +. [c.361]

    Необходимо учитывать, что при разложении амальгам в щелочных растворах на скорость процесса влияет загрягдаение раствора катионами, извлекаемыми щелочами из стекла ячейки (В. Н. Коршунов). Поэтому опыты проводят в ячейке из полистирола. До рН Ю закономерности разложения амальгам в чистых условиях полностью соответствуют электрохимическому механизму. При рН>10 скорость разложения амальгам не зависит от pH раствора. Такое явление может наблюдаться при химическом и электрохимическом механизмах растворения амальгамы с одновременным разрядом молекул воды. Однако в отсутствие загрязнений скорость разложения амальгам оказывается пропорциональной Сме (рис. 184), причем тангенс угла наклона прямых с—Сме может быть различным для амальгам разных металлов. Если в ячейку добавляется стеклянный порошок, то скорость разложения амальгамы возрастает, а зависимость от с е искривляется и приближается к характерной для электрохимического механизма. Визуально при этом можно было наблюдать на поверхности амальгамы островки энергичного выделения пузырьков водорода. При механическом удалении островков ток растворения амальгамы падает, и снова наблюдаются закономерности, свойственные химическому механизму разложения амальгам. Химический механизм подтверждается также при измерении зависимости от lg 1. В соответствии с уравнением [c.352]

    Одновременно с этими протекает также реакция 2Н+-Ь2е—> — -Нг. Выделение металла с практически приемлемым выходом по току в данном случае возможно при условии, что разряд ионов водорода будет искусственно затруднен (тем более, что перенапряжение водорода на хроме мало). Это достигается путем максимального повышения pH. Однако уже при рН = =3 образуются гидроксид Сг(ОН)з и основные соли, сильно загрязняющие металл. Выделение водорода ведет к повышению pH приэлектродного слоя. Поэтому так же, как и марганец, хром получают из сильно буфферированного аммонийными солями комплексного электролита. Таким путем удается получать плотные толстые осадки хрома как из сульфатных, так и из хлоридных электролитов, причем выход по току приближается к 50%. Процесс проводят при обязательном разделении католита и анолита диафрагмой, с свинцово-серебряными анодами. Состав электролита (в г/л) 15 СгЗ+ и 15 Сг +, 200—270 (NH4)2S04, 250—280 свободной серной кислоты в анолите, что соответствует извлечению из 1 л питающего раствора около 100 г хрома. Процесс ведут при катодной плотности тока до [c.401]

    До сих пор рассматривались случаи протекания на поверхности металла только одного электродного процесса, который в отсутствие внешнего тока характеризуется равновесным потенциалом 8о, определяемым термодинамически уравнением Нернста. Однако чаще всего на одной и той же поверхности металла проявляются два или более различных, не зависящих друг от друга электродных процесса. Так, наряду с реакцией для электродного металла Ме Ме " г е может протекать еще окислительно-восстановительный процесс, например, выделение — ионизация водорода 2Н+ + 2е На или восстановление — выделение кислорода О 2 + 4Н+ + 4е" 2НаО. Даже на некорродирующих металлах возможно одновременное протекание двух или нескольких окислительно-восстановительных реакций, если в электролите содержатся соответствующие вещества. [c.778]

    Теоретическая сторона вопроса об электроосаждении рения из водных растворов подробно рассмотрена О. А. Суворовой [65—67]. На основании большого экспериментального материала исходя из теории замедленного разряда и диффузионной кинетики О. А. Суворова показывает, что механизм электровосстановления рения тесно связан с механизмом восстановления водорода и выводит ряд уравнений, позволяющих количественно оценивать влияние отдельных факторов и их взаимоотношения на процесс выделения металла (рения). К этим факторам относятся концентрации (активности) перрената и водородных иоиов, перенапряжение для выделения рения и водорода на рении, скорость подвода перрената и ионов водорода к электроду (коэффициенты диффузии), плотность тока, при которой ведется процесс, или, точнее, потенциал, обусловливающий данную плотность тока. Так как воостановление перренат-иона идет с обязательным участием водорода (как и других кислородсодержащих ионов), то последний должен присутствовать не только в избытке, обеспечивающем воостановление перрената, но и Б значительно большем количестве, так как часть ионов водорода восстанавливается на электроде бесполезно , не участвуя в восстановлении перрената. Это легко объясняется низким перенапряжением выделения водорода на рении. Поэтому при электролитическом восстановлении рения никогда не удастся получить высокий выход рения по току. Можно было бы играть на отношении концентраций перрената и ионов водорода, однако качество получаемых осадков также связано с соотношением между концентрациями перрената и водорода если при повышении концентрации перрената не повысить концентрации Н" ", то образуются черные осадки , т. е. осадки не металлического рения, а его окислов. Повышение концентрации Н+ приведет к выделению металла, но одновременно резко понизится выход рения по току, так как на электроде будет преобладать выделение водорода. Наиболее благоприятные условия для практического осуществления процесса создаются, как указывает О. А. Суворова, при отношении концентраций (аетивностей) НеОГ Н+ - 1 2,5 - 3. [c.36]

    Одновременное растворение двух металлов. Если электрод состоит из двух механически соединенных металлов, находящихся в электрическом контакте, то такая система может работать как короткозамкнутый гальванический элемент. Металл, обладающий в данном растворе более отрицательным потенциалом, работает анодно, т. е. растворяется на более положительном металле идет какой-нибудь катодный процесс, например выделение водорода. При этом оба металла заполяризовываются до некоторого общего компромиссного потенциала, близкого к потенциалу более отрицательного металла. Сила тока в такой цепи, т. е. скорость процессов, а также и величина компромиссного потенциала зависят ие только от птенциалов обоих металлов, взятых порознь, но и от хода поляризационных кривых, т. е. от анодного перенапряжения первого металла и перенапряжения водорода на втором металле. [c.418]

    Принцип метода и проведение его мало отличаются от того, что сказано в главе, посвященной кулонометрии (см. стр. 517). Однако в этом методе не требуется, чтобы ток расходовался на реакцию осаждения со 100%-ной эффективностью, поскольку ток не измеряют. Главное, что требуется, — специфичность реакции осаждения. Электролиз поэтому чаще всего проводят при постоянном потенциале, что дает возможность проводить только желаемую электрохимическую реакцию. Когда есть возможность, проводят электролиз при постоянной силе тока, что ускоряет определение. Если одновременно с реакцией выделения требуемого вещества при электролизе происходят другие электрохимические реакции, это не имеет значения, когда в результате таких посторонних реакций получаются не твердые вещества, отлагающиеся на электроде, а растворимые или газообразные вещества. Поэтому электролитическое выделение того или иного металла можно проводить в присутствии неэлектроактивных веществ при одновременном выделении газообразного водорода за счет восстановления ионов Н+ или воды. В результате можно даже ускорить выделение металла вследствие повышения миграционного тока. [c.237]

    Как было найдено, некоторые смешанные комплексы ряда металлов групп IVB, VB и VIB, содержащие одновременно хлорзамещенные группы и гексафторацетилацето-натные группы, достаточно летучи и легко могут быть разделены хроматографически [6]. Постоянной проблемой, с которой сталкиваются при хроматографировании таких соединений титана (IV), ниобия (V) и тантала (V), является гидролиз в водных растворах. В связи с этим желательно найти иной способ приготовления образцов, не связанный с необходимостью работать с водными растворами. Многообещающий в этом смысле путь связан с превращением окислов в безводные хлориды и последующей реакцией хлоридов с лигандом. Как уже отмечалось в предыдущем разделе, для превращения окислов или сульфидов в хлориды можно использовать реакцию с четыреххлористым углеродом в запаянной трубке. К хлоридам, растворенным или суспендированным в четыреххлористом углероде, добавляется лиганд, при этом происходит выделение хлористого водорода ни создания буферной среды, ни нейтрализации обычно не требуется. В зависимости от степени окисления и координационного числа металла полученные комплексы представляют собой соединения [c.45]

    N= It, где F — постоянная, получившая название числа Фарадея и равная 96 500 кул/г-экв. Эта величина равна произведению заряда электрона на число Авогадро. Ф. 3. являются примером абсолютно точных законов, к-рые никогда не нарушаются и не знают исключешш. С помощью Ф. з. были определены атомные веса ряда элементов кроме того, этими законами часто пользуются для определения заряда ионов в р-ре. На использовании Ф. а. основана кулонометрия— напболее точный метод определения количества электричества. Все кажущиеся отклонения от Ф. з. связаны, как правило, с протеканием побочных процессов на электродах. Напр., нри электроосаждении нек-рых металлов наряду с основной реакцией происходит одновременное выделение газообразного водорода. Поэтому Ф. 3. следует применять к суммарной электродной реакции. Лишь немногие электродные реакции протекают без побочных процессов, поэтому в кулоно- [c.189]

    Часть активных матерпалов X. и. т. расходуется на бесполезные побочные процессы, к-рые наз. с а м о-разрядом. Этп процессы протекают па электродах лпбо в р-ре электролита. Наибольшее значение для саморазряда имеет саморастворение отрхщатель-иогй электрода, к-рое возможно термодинамическ г, т. к. металлы, обычно составляющие анод Ъп, Сс1, Ре п др.), в ряду напряжений стоят левее водорода. В результате саморастворения уменьшается количество активного металла, а образующийся водород может приводить к механич. раз])ушеиию X. п. т. либо оттеснить электролит от электродов. Саморазряд положительного электрода вызывается восстановлением активных материалов с одновременным выделением газообразного кислорода. [c.324]

    Часто на катоде наряду с осаждением металла происходит одновременное выделение водорода. При этом поляризационные кривые этих реакций могут иметь прямо противополонсное расположение. Однако в основном соотношения между водородом и металлом при совместном выделении водорода остаются те же, что и при разряде двух ионов металла. [c.42]

    Наиболее часто катодное выделение металлов происходит при одновременном разряде ио1Нов водорода. Выходы по току металла (Л) и водорода (1—А) пропорциональны плотностям тока, потребляемым ионами  [c.377]

    Газы, растворенные в твердом металле, оказывают существенное влияние на его физико-химические и механические свойства. Экспериментальные данные о растворимости водорода в различных металлах приведены в литературе [1—3]. Изобары растворимости водорода в железе, никеле, меди, кобальте и кремнии нри давлении водорода в одну атмосферу показывают, что абсорбция водорода возрастает с повышением температуры, причем особенно резкое увеличение растворимости водорода наблюдается в точке плавления металла. Для некоторых других металлов, например, титана, циркония, ванадия, тантала и ниобия, растворимость водорода, наоборот, уменьшается с повышением температуры. Каких-либо определенных данных о растворимости водорода в германии не имеется. Между тем в процессе очистки германия его двуокись восстанавливается водородом при температуре плавления германия, и металл в атмосфере водорода остывает в слиток. Абсорбция водорода германием л Ожет происходить одновременно с его восстановлением из двуокиси. При дальнейшей очистке германия путем многократной перекристаллизации в высоком вакууме значительная часть водорода, по-видимому, удаляется. В процессе производства германия десорбция водорода происходит в условиях, обеспечивающих максимальное выделение водорода поэтому в слитке германия либо совсем не остается водорода, либо остаются весьма незначительные его количества. В связи с этим все общепринятые методы определения примеси водорода в металлах, основанные на вакуумнагреве или вакуумплавле-нии, по-видимому, могут оказаться пригодными только для исследования образцов германия в процессе производства, но [c.36]

    Водородное охрупчивание металлов при сероводородной коррозии связано с его наводороживанием, происходящим при проникновении внутрь металла немолизованной части водорода, образующегося в процессе катодной реакции. Ингибиторы, снижая скорость коррозии в целом, оказывают свое влияние и на ее катодную составляющую. При этом они могут не только уменьшить скорость катодного выделения водорода, но и изменить соотношение между молизованной (выделившейся в окружающую среду ) и немолизованной ( проникшей в металл ) частями водорода. Оценить это соотношение и влияние на него ингибиторов коррозии можно в экспериментах при одновременном определении водородопроницаемости и ала и скорости обшей коррозии. [c.24]

    Одно из принциниальных различий между этими двумя механизмами коррозии металлов заключается в том, что при электрохимической коррозии одновременно происходят два процесса окислительный (растворение металла на одном участке) и восстановительный (выделение катиона из раствора, восстановление кислорода и других окислителей на другом участке металла). Например, в результате растнорения цинка в серной кислоте образуются ионы цинка и выделяется газообразный водород при действии воды железо переходит в окисное или гидроокис-ное состояние и восстанавливается кислород с образованием гидроксильных ПОПОВ. При химической коррозии разрушение металлической пoвeJЗXнo ти осуществляется без разделения на отдельные стадии и, кроме того, продукты коррозии образуются непосредственно на тех участках поверхности металла, где происходит его разрушение. [c.6]

    При pH О потенциал ен+/н, =0. Окислительная способность редокс-системы возрастает, так что в принципе все металлы с отрицательным стандартным потенциалом растворяются в растворах с активностью ионов водорода, равной 1. Замедленность стадии выделения водорода, которая имеет место на чистых металлах, снимается добавлением следовых количеств некоторых благородных металлов. При этом на поверхности рас-творяющегс ся металла образуются локальные короткозамкнутые гальванические элементы — на включении благородного металла (катоде) происходит выделение водорода, так как перенапряжение на нем невелико одновременно начинает ионизироваться в виде гидратированных ионов основной неблагородный металл,— анод. [c.417]

    Интересные особенности возникают, если в растворе присутствует комплексообразователь, образующий с ионами металла достаточно прочные комплексы. При этом равновесный П(зтенциал металла смещается в отрицательную сторону и становится возможным растворение металлов, которые в отсутствие комплексообразователя не растворяются. Так, например, медь медленно растворяется в растворах цианида калия с одновременным выделением водорода. Золото растворяется в присутствии КС1 и растворенного кислорода. Комплексообразованне играет важную роль при растворении благородных металлов (золота, платины и др.) в царской водке. Окислительно-восстановительный потенциал царской водки более отрицателен, чем окислительно-восста-новительный потенциал азотной кислоты. Однако присутствие в царской водке ионов хлора, образующих прочные комплексы с благородными металлами, смещает равновесный потенциал металла в отрицательную сторону настолько, что происходит саморастворение металла (например. Au), не растворяющегося в концентрированной HNO3. [c.358]


Смотреть страницы где упоминается термин Металлы выделение одновременное с водородом: [c.869]    [c.454]    [c.637]    [c.56]    [c.492]    [c.146]    [c.199]    [c.388]    [c.144]    [c.14]   
Технология электрохимических производств (1949) -- [ c.521 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы водородом

Металлы выделение из руд

Одновременное катодное выделение металла и водорода



© 2025 chem21.info Реклама на сайте