Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий очистка

    Руководствуясь справочными данными, определите, возможна ли эффективная очистка (по выходу продукта) перекристаллизацией следующих веществ иодида лития, сульфата лития, хлорида натрия, ацетата натрия, дихромата калия, хромата калия, нитрата рубидия, гидроксида цезия. [c.69]


    Хроматографическая очистка солей рубидия и цезия прн относительной простоте, небольшой трудоемкости и цикличности обладает одним существенным недостатком в результате нее получают более разбавленные растворы, чем исходные. С разбавлением связаны значительные энергетические затраты на упаривание растворов и потребность в больших производственных емкостях, а все это резко снижает экономический эффект, получаемый от применения смол. [c.145]

    Малоисследованной областью пока остается фракционированная кристаллизация солей рубидия и цезия из органических растворителей, хотя здесь и следует ожидать более высокой кратности очистки вещества. [c.140]

    Кальций используется в качестве восстановителя при извлечении из соединений почти всех редкоземельных элементов и таких металлов как уран, торий, хром, ванадий, цирконий, цезий, рубидий, титан, бериллий, при очистке свинца от олова и висмута, для очистки от серы нефтепродуктов, для производства антифрикционных и других сплавов, в виде металла и сплавов в химических источниках тока. [c.240]

    Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов, В перво(1 части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии, В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов н отходов прэизводства, современные методы разделения и очистки элементов. [c.2]

    Третий путь экстракционной очистки соединений рубидия и цезия предполагает использование сильноосновных растворителей, из-за значительной донорной способности которых растворитель присоединяется к катиону соли образуются устойчивые экстрагируемые соединения щелочных металлов [241]. Основность таких органических растворителей определяется функциональными группами типа Р -> О, полуполярные связи которых и стерическая доступность атома-до-нора электронов (0, N, S) обеспечивают высокую способность сольва-тировать, а значит, и экстрагировать щелочные металлы. [c.147]

    Сущность рекомендованного метода очистки солей рубидия от микропримеси цезия состоит в следующем [247—249]. В водном растворе Rbl, нагретом до 60—80°, растворяют мелкорастертый иод из расчета выделения - 10% растворенного Rbl (соотношение масс Rbl HaO I2 = = 5 5 1) в виде первой фракции загрязненного цезием Rb[I(l2)]. Смесь перемешивают до полного растворения иода. Из полученного раствора кристаллизуют Rb[I(l2)], интенсивно перемешивая раствор и охлаждая льдом до 5°. Выпавшие кристаллы отфильтровывают. Осаждают вторую фракцию Rb[I(I)a] при той же температуре в расчете на выделение из раствора такого же количества Rbl. Из маточного раствора проводят п осаждений Rb[I(I)2 (обычно 3—4 в зависимости от исходного содержания цезия) получают в общей сложности (п -h 1) фракций загрязненного Rb[I(I)2l. Последний маточный раствор упаривают при 120—130 досуха. Сухой остаток прокаливают сначала при 150° для удаления основной массы иода, затем при 300—350° для его полного удаления. Иодид рубидия, получаемый после прокаливания, содержит 0,01% цезия (исходное его содержание в Rbl от 0,25 до 2,5%). Выход очищенного рубидия в прямом цикле 55%, остальные 45% содержатся в обогащенном цезием осадке, выделенном при (и -Ь 1)-кратном осаждении Rb[I(I)2] в процессе очистки. Осадок загрязненного Rb[I(I)2] после предварительного прокаливания до Rbl возвращают в головную стадию процесса очистки, что сводит потери Rbl к минимуму [247—249]. Понятно, что очищать можно и другие, помимо Rbl, соли рубидия после перевода их в Rbl, например, через гидрооксалат — карбонат. [c.149]


    Сопоставление различных методов получения рубидия и цезия показывает, что металлотермическое восстановление солей по простоте и экономичности более других удовлетворяет современным требованиям. При тщательном проведении восстановления получаемые рубидий и цезий могут быть свободны от примесей других металлов. Однако рафинирование все же необходимо, и некоторые его этапы повторяют те, которые характерны для процессов очистки лития. [c.157]

    Умеренные количества реагентов приводят к удалению более 90 % радиоактивных изотопов лантана, кадмия, скандия, иттрия, циркония и ниобия. Однако большие дозы извести и соды снижают концентрацию цезия-137, бария-137, вольфрама-185 только на 50 %. Одна известь способна очистить раствор от смеси цирконий-95 + ниобий-95. Содово-известковый способ очистки воды не применим для ее очистки от радиоактивного йода. [c.323]

    В результате выполненных исследований состояния активной зоны стало известно, что большая часть из 177 топливных сборок, которые содержат около 37 ООО твэлов, была близка к полному разрушению в верхней четверти активной зоны реактора, в которой имеется свободная от топлива полость объемом 9,3 м . Полагают, что часть топлива и продуктов деления из этой полости — в значительной мере цезий-137, цезий-134 и стронций-90, содержавшиеся в теплоносителе в виде взвеси, была разнесена по всему первому контуру другие материалы этой полости, возможно, находятся на дне корпуса реактора. Если существующее представление о состоянии активной зоны верно, то в ходе аварии активная зона потеряла от 8 до 16 т топливных материалов из их общего количества около 100 т. Из этих материалов наиболее мощным единичным источником излучения, который влияет на процесс очистки установки от радиоактивных загрязнений, является цезий-137. [c.20]

    Извлечение рубидия и цезия из радиоактивных отходов. В связи с развитием ядерной энергетики переработка радиоактивных отходов энергетических реакторов превратилась в серьезную проблему. Появилось много исследований по выделению ряда элементов из растворов низких концентраций, что объясняется как необходимостью очистки сточных вод от продуктов деления перед сбросом, так и самостоятельным интересом к получению некоторых соединений и препаратов. Примером может служить получение у-источников, главным образом на основе s-137, которые используются в различных отраслях народного хозяйства [10]. Среди радиоактивных отходов s-137 — долгоживущий радиоактивный изотоп — занимает особое место. Он выделяется при реакции деления в относительно большом количестве и определяет активность продуктов деления после длительного периода их охлаждения . Поэтому выделение цезпя (и стронция) из радиоактивных отходов — решающий вопрос для безопасности длительного хранения отходов. Селективное выделение рубидия из радиоактивных растворов представляет практический интерес из-за стабильности его изотопов - [c.131]

    Нами разработан способ получения борогидридов рубидия и цезия в водно-спиртовых растворах с использованием более доступных соединений. Этот способ позволяет применять технический борогидрид натрня чистотой 85—90% без предварительной его очистки. [c.62]

    Рубидий и цезий марганцовокислые относятся к малорастворимым соединениям. Растворимость перманганата рубидия при 0°—0,5 г, при 60°—4,7 г на 100 г воды растворимость перманганата цезии при 0° — 0,1 г, при 60°— 1,3 г на 100 г воды. Синтез перманганатов рубидия и цезия основан на осаждении их из растворов перманганатом калия и дальнейшей очистке путем перекристаллизации [1]. [c.72]

    Как известно, основная часть р- и у-активности в облученном Уране принадлежит осколочным элементам цирконию, ниобию, рутению, цезию, стронцию, барию и элементам редкоземельной -группы. В результате эфирной очистки плутоний достаточно хорошо отделяется от ниобия, цезия и редкоземельных элементов. [c.308]

    Нужно иметь в виду также, что рудной технологии соединений рубидия не существует, и определяющим моментом при попутном извлечении рубидия из различных, в том числе и литийсодержащих, минералов (лепидолита и циннвальдита) является его отделение от других щелочных металлов, прежде всего калия, цезия и лития. Следовательно, тесная генетическая связь лития, рубидия и цезия и сопутствующего им калия не может не приниматься во внимание при разработке технологии извлечения из комплексного сырья и очистки соединений любого из рассматриваемых здесь элементов. Поэтому во многих случаях необходим анализ технологических схем именно комплексной переработки, очевидно, воз- [c.8]

    Принципиальные возможности использования цеолитов в качестве селективных ионообменников очевидны пз приведенных выше данных по ионообменным равновесиям и кинетике. Однако широко эти возможности пока не реализуются. Синтетические цеолиты из-за невысокой химической устойчивости могут найти ограниченное применение [7], в то время как высококремнистые дешевые природные цеолиты имеют широкие перспективы [74, 7.5]. Имеющиеся литературные данные свидетельствуют о том, что синтетические цеолиты с успехом могут быть использованы для разде.тения изотопов лития, а также смесей щелочных металлов, например рубидия и калия, рубидия и цезия, очистки цезия от рубидия, калия и натрия на цеолите X, а также рубидия от калия, натрия, цезия на цеолите А. Цеолит X позволяет осуществлять разделение стронция и кальция [29] в условиях, когда концентрация кальция в 400—500 раз превышает содержание стронция. Высокие селективность и емкость цеолита Л позволили осуществить в лабораторных л словиях выделение лтеди(П) пз продуктов гидрометаллургического производства на фоне 0,7. У раствора сульфата натрия при pH 4—4,5 [7Г)], а также хроматографическое разделение меди и никеля [25]. Показано, что прп-лгенение синтетических цеолитов вместо ионитов в противо-точных ионообменных установках зпачите.яьпо повышает эффективность процессов разделения [7]. [c.58]


    Для концентрирования Сз из разбавленных водных растворов применяют соосаждение с ф эроцианидами N1, Си, 2п, Ре, Со, Са и М , Обычно радиоизотопы цезия вьщеляют последовательным осаждением кремневольфраматов, кобальтинитритов и перхлоратов Дополнительную очистку проводят с помощью Ре(ОН)з, Предел обнаружения метода (3-5) 10 Ки/препарат, Измерение активности радионуклидов ( " С5, С8, С5) проводят на многоканальном у-спектрометре в диапазоне энергий 0-1700 кэВ, Метод применим для определения радиоизотопов Сз в морской и пресной воде, в атмосферных осадках, в аэрозол1.ных пробах, а также в пробах биологического происхождения после их соответствующей обработки, В водных пробах с низкой удельной активностью необходимо провести предварительное концентрирование цезия. [c.308]

    В качестве восстановителя используют и АК Для восстановления применяют обычно литиевые минералы и ферросилиций. Натрий получают электролизом расплавленных солей илн гидроксидов. Калий может быть получен натрийтермическим методом из расплавленного хлорида или гидроксида, электролизом расплава КС1—Na l, восстановлением КС1 при нагревании в вакууме с А1 или Si (берут А1- -СаО, Si+ aO). Рубидий и цезий в небольших количествах удобно получать нагреванием в вакууме соответствующих гидроксидов с металлическим кальцием. Для очистки Na, К, Rb, s используют вакуумную перегонку. [c.252]

    H2SO4 получались растворимые сульфаты лития и других щелочных элементов, а также в большом количестве сульфат алюминия. Во всех случаях первоначально из растворов выделяли калиевые квасцы, первые фракции которых были обогащены менее растворимыми квасцами рубидия и цезия, а затем, после сложной очистки растворов, осаждали Ь12СОз. В последующий период развития технологии соединений лития главные варианты сернокислотного метода переработки лепидолита были усовершенствованы и частично упрощены [118]. [c.37]

    Растворимость гидрооксалатов калия, рубидия и цезия при 2Г соответственно 2,46 3,03 и 4,34 г в 100 г воды [88]. Их часто используют как промежуточные соединения в процессах очистки различных солей этих элементов ввиду легкости перехода к карбонатам, а следовательно, и к другим солям после завершения стадии очистки. Они выделяются ири действии на нагретые растворы солей рубидия и цезия твердой щавелевой кислоты, взятой из расчета, чтобы раствор был насыщен ею после охлаждения и выделения осадка МеНз(С204)а-2Н20 [101. [c.99]

    Полученный тем или иным путем технический saiSbj lg] можно дополнительно очистить фракционированной кристаллизацией из уксусной или соляной кислоты ( 3,52 н.). Несмотря на необходимость дополнительного извлечения цезия из маточных растворов после осаждения С8з[5Ь2С191 очистка цезия через это соединение дает очень хорошие результаты и заключает в себе много неиспользованных возможностей. [c.121]

    Разложение поллуцита соляной кислотой считается [183] наиболее дешевым (по себестоимости производства и капитальным вложениям) методом получения технического s l. Его лучшие варианты обеспечивают переход в раствор 95—98% цезия, а очистка s l через sslSba lg] сразу позволяет получать препарат чистотой 99,9% 17]. [c.122]

    Примером комплексной переработки лепидолита с извлечением из него рубидия и цезия может служить метод, предложенный в СССР Е. С. Бурксером [198]. Согласно этому методу, лепидолит сплавляют с K2SO4 при 1090°. Плав обрабатывают водой. В раствор переходит весь литий, частично рубидий и цезий. Большая часть рубидия и цезия находится в остатке. Его при 100° разлагают серной кислотой. Разложенный осадок обрабатывают водой. Из концентрированного раствора при охлаждении выкристаллизовывается смесь квасцов калия, рубидия и цезия, которая в процессе фракционированной кристаллизации обогащается рубидием и цезием. Обогащенные квасцы обрабатывают при кипячении карбонатом бария для получения карбонатов щелочных элементов. Из раствора карбонатов рубидий и цезий осаждают в виде (Rb, s)2[Pb la] (таким путем осуществляют дальнейшую очистку от калия). Осадок гидролизуют, добавляя немного раствора аммиака. Свинец выделяется в виде РЬОг. Из отфильтрованного раствора цезий осаждается в виде Сзз[5Ь2С1д]. Описанный метод позволяет получать хлориды рубидия и цезия чистотой 97% [7, 8, 198]. [c.127]

    Разработанный [228] метод осаждения цезия с другим носителем — ферри-цианидом цинка 2пз[Ре СЫ)в]2 — позволяет соосаждать цезий на осадках небольшого объема ( 1% объема исходного раствора). Следовательно, можно получать осадки высокой удельной активности, что удобно для изготовления у-источников. По этому методу Сз-137 выделяют при 20—25° из растворов, содержащих его меньше 0,0001 моль/л, на феррицианиде цинка с условной концентрацией 0,001—0,0004 моль/л. Носитель образуется при взаимодействии в растворе стехиометрических количеств Ka[Fe( N)в] или (NH )з[Fe( N)в] с Zn(NOз)2 или с 2пСи. Промыв и отцентрифугировав, осадок высушивают при 110° и прокаливают при 500—600 . Если цезий нужно отделить от носителя, то можно, например, растворить осадок в растворе аммиака и обработать анионитом. Выход цезия превышает 95% при коэффициенте очистки 10 . [c.137]

    Рассмотренные примеры использования АнГ и елочных элементов показывают, что координационные соединения с успехом могут быть применены для эффективной очистки и получения особо чистых соединений рубидия и цезия. Они обеспечивают глубокую очистку рубидия и цезия потому, что позволяют реализовать в технологическом процессе системы с минимальным коэффициентом сокристаллизации удаляемых примесей. Эти достоинства АнГ в физико-химическом отношении неоспоримы. Но успех глубокой очистки любых веществ зависит и от решения ряда чисто технологических и инженерных задач. Иначе говоря, встают вопросы, связанные с созданием устойчивой аппаратуры для работы с АнГ необходима и общая оценка их технологичности. Известно, что галогены и межгалогены (I I, 1Вг и др.). [c.150]

    Технологические же достоинства АнГ исключительно высоки АнГ легко и просто синтезируются, выделяясь из растворов в виде хорошо фильтрующихся кристаллических осадков, характеризуются высокими температурными коэффициентами растворимости и высокой (в среднем 10—30) кратностью очистки. Применение АнГ как промежуточных технологических продуктов полностью исключает дополнительные операции по очистке, так как нелетучие ионы в процесс не вводятся, перевод АнГ в очищенные соединения (простые галогениды) достигается термическим разложением при невысокой температуре и полной регенерации галогенов и межгалогенов. Все это и определяет выбор АнГ и эффективность их использования для получения наиболее чистых соединений рубидия и цезия. Этим же объясняется то обстоятельство, что АнГ широко применяются в лабораторной практике и твердо прокладывают себе путь в технологию. Выше можно найти немало примеров, подтверждающих высказанную мысль. [c.152]

    Зонная плапка перспективна не только для очистки солсй щелочных металлов, но и для солей аммония, например, для Очистки нитрата аммония [9, 124, 125] от примесей калия, рубидия, цезия, меди, бария, стронция, кальция. [c.363]

    Соединения типа АХО где А--КЬ или Ся, X — галоид, представляют в настоящее 1время интерес по крайней мере в двух отношениях. Во-первы,ч, благодаря высокому температурному коэффициенту растворимости и сравнительно низким температурам термического разложения эти соединения могут быть использованы для глубокой очистки рубидия и цезии от примесей и последующего получения высоко чистых галогснидов этих металлов — важнейших материалов для специальной оптики и других областей новой техники. Во-вторых, хлораты, броматы и йодаты рубидия и цезия могут получить непосредственное применение благодаря собственным физическим свойствам, в частности пьезоэлектрическим. В обоих случаях необходимы препараты высокой чистоты. Наконец, очищенные соединения могут быть использованы для получения других (кроме галогенидов) высоко чистых солей рубидия и цезия. [c.77]

    Предлагаемая методика включает приготовление водных растворов солей из карбонатов рубидия и цезия и растворов галондокислородных кислот, полученных ионообменным методом из соответствующих солей калия [4, 5]. Последующая очистка проводится путем фракционной кристаллизации, условия которой были подробно изучены для хлората рубидия [6, 7] и дополнительно исследованы в приложении к остальным галоидокислородным солям рубидия и цезия. [c.78]

    Коэффициент кристаллизационной очистки галоидокислородных солей Рубидия и цезия от щелочных примесей за одну кристаллизацию [c.78]

    В табл. 18 рассматривается взаимодействие урана, тория плутония и продуктов деления с химическими реагентами, обычно применяемыми для выделения и очистки плутония из облученного урана. Поскольку на практике чаще всего приходится иметь дело с азотнокислыми растворами, то данные таблицы относятся именно к таким растворам. При этом предполагается, что в ис ходном растворе присутствуют уран в виде и02(Н0з)2 церий — в виде смеси трех- и четырехвалентных соединений цезий, стронций, барий, все редкоземельные элементы, итт.рий, родий — в виде нитратов цирконий—в виде нитрата циркония ниобий— [c.265]

    Цолучение нитрата иезия высокой чистоты сводится к очистке соли от примесей тяжелых металлов и железа и отделению цезия от примесей щелочных металлов (натрия, калия, рубидия). [c.94]

    В предлагаемой методике для очистки нитрата цезия от примесей тяжелых металлов и железа используется метод, основанный на комплексообразованни этих примесей с ди-этилдитиокарбаматом натрия и последующей сорбции полученных комплексов яктипиропапным углем. [c.94]

    Промывные воды присоединяют к основному раствору. Фильтрат проверяют иа полноту отделения тяжелых металлов и избытка диэтилдитиокарбамат иона. Для этого в две пробы фильтрата (каждая по 5 мл] добавляют по 2,5 мл изоамилового спирта и в одном случае—1 мл 3%-ного раствора диэтилдитиокарбамата натрия, а в другом — 1 мл раствора сернокислой меди с концентрадирй 1 г/л и взбалтывают. Обе вытяжки изоамилового спирта должны быть бесцветны. Если вытяжки окрашены, проводят дополнительную очистку раствора азотнокислого цезия добавлением 3%-ного раствора диэтилдитиокарбамата натрия и угля. [c.95]

    Метод радиационного окисления может быть использован для очистки сточных вод от фенолов, цианидов, красителей, инсектеци-дов, лигнина, а также ПАВ. Очистка сточных вод осуществляется при воздействии на них излучения высоких энергий, в качестве источников которых используются радиоактивный кобальт и цезий, ТВЭЛы, радиационные контуры, ускорители электронов. Загрязняющие воду вещества вступают в реакцию с продуктами радиолиза воды ОН, НО2 (в присутствии кислорода), Н2О2 — перечисленные вещества являются окислителями, а также Н" и е гидр, (гидратированный электрон). [c.124]

    Гидроокиси можно получать и при помощи ионообменных смол [99, 117], например, при пропускании 2 н. водного раствора сульфатов рубидия и цезия через анионит (леватит ММ-160) в ОН-форме, помещенный в полихлорвиниловую колонку [99]. В результате такой фильтрации не только образуются гидроокиси, но и понижается содержание ряда примесей карбонатов —с 0,3 до 0,08% хлоридов — с 0,1 до 0,6% сульфатов — с 0,04 до 0,03% трехокиси железа — с 0,002 до 0,008% хлоридов — с 0,07 до 0,037о [И8]. Для грубой очистки технических гидроокисей рубидия и цезия их растворяют в абсолютном этаноле, полученный раствор после отстаивания декантируют и выпаривают в серебряной чашке на водяной бане. Образующееся вначале смолообразное вещество удаляют, а остаток растирают на никелевой пластинке в атмосфере декарбонизованного воздуха [92, 93]. [c.91]

    Предложен метод синтеза RbF путем гетерогенной реакции между Rb и Сгр2 [122]. Для очистки фторида цезия от примеси калия (до 0,1%) разработан [144] лабораторный способ вакуумтер-мической дистилляции фторидов в платиновой аппаратуре. Сущ- [c.94]


Смотреть страницы где упоминается термин Цезий очистка: [c.364]    [c.83]    [c.128]    [c.140]    [c.146]    [c.148]    [c.149]    [c.150]    [c.303]    [c.362]    [c.79]    [c.94]   
Химия и технология соединений лития, рубидия и цезия (1970) -- [ c.100 , c.104 ]

Неорганическая химия Том 1 (1971) -- [ c.127 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2025 chem21.info Реклама на сайте