Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая стойкость ионитов аниониты

    Полярография применяется также при изучении различных физико-химических явлений. По полярограммам судят о том, в каком виде присутствуют в растворах восстанавливающиеся ионы, определяют состав и прочность комплексов, число электронов, принимающих участие в акте восстановления, исследуют кинетику электрохимических превращений и, в частности, устанавливают стадийность электрохимических процессов. При этом во всех случаях, когда изучаются реакции электровосстановления, целесообразнее применять ртутный капельный электрод. Именно в реакциях восстановления с наибольшей полнотой проявляются положительные свойства этого электрода чистота поверхности, достигаемая благодаря непрерывному ее обновлению в процессе капания широта диапазона отрицательных потенциалов, обусловливаемая высоким водородным перенапряжением на ртути и обеспечивающая проведение почти любых восстановительных реакций хорошая воспроизводимость данных и т. д. В то же время ртуть вследствие невысокого перенапряжения на ней кислорода и возможности ее окисления не совсем удобна при изучении реакций электроокисления и анализе анионов. Поэтому наряду с капающими ртутными катодами в полярографии используют твердые микроэлектроды. Наилучшим материалом для твердых микроэлектродов оказалась платина, обладающая высокой химической стойкостью, значительным перенапряжением кислорода и хорошими механическими свойствами. Платиновые микроэлектроды применяются не только при изучении окислительных процессов, но и при полярографическом анализе расплавленных солей (Делимарский). Полярографический анализ с твердыми микроэлектродами проводят так же, как и с ртутным капельным электродом. Для создания стационарности диффузии используют вращение электрода, его колебания, перемешивание раствора и т. д. Обновление поверхности электрода и удаление с нее продуктов реакции осуществляют или механически, или электрохимическим растворением. Однако если даже принять все эти меры, то и тогда не удается достигнуть точности и воспроизводимости, свойственных ртутным капельным электродам. Полярография с твердыми катодами поэтому менее распространена, и к ней прибегают лишь в тех случаях, когда применение капельных ртутных электродов невозможно. [c.409]


    Диафрагмы должны обладать хорошей химической стойкостью и достаточной механической прочностью. Материалами для их изготовления служат асбест, керамика, пластмассы. В последние годы получают распространение ионитовые диафрагмы или мембраны, проницаемые только для ионов одного заряда (катионов или анионов). [c.36]

    В последнее время в качестве ионитов стали применять синтетические смолы, причем существуют смолы, способные обменивать как катионы (катиониты), так и анионы (аниониты). Преимущество ионообменных смол перед ионитами других типов заключается в их высокой механической прочности, химической стойкости и большой сорбционной (обменной) емкости. Обмен ионов с помошью синтетических смол может происходить во всем объеме смолы, так как растворенные ионы обычно свободно проникают сквозь структурную решетку смолы. [c.479]

    Сущность процесса ионного обмена. В середине XIX в. было открыто свойство почв обменивать в эквивалентных количествах входящие в их состав ионы на дрз гие ионы, содержащиеся в почвенном растворе. Способность к ионному обмену была позднее открыта и у некоторых природных алюмосиликатов (глауконитов, бентонитов). Первый искусственный минеральный ионообменный материал был получен в начале XX в., но из-за малой механической и химической стойкости и недостаточно высокой способности к ионному обмену он не нашел широкого применения в практике. Несколько позднее обработкой бурых углей серной кислотой был получен сульфоуголь, обладающий способностью к обмену катионов. Первый полимерный ионообменник, синтезированный Адамсом и Холмсом в 1935 г., положил начало большому количеству работ по синтезу новых ионообменных материалов, по изучению их свойств и применению в различных отраслях хозяйства. Наиболее ши Уоко используются ионообменные материалы в практике подготовки природных и очистки производственных сточных вод. Природные, искусственные и синтетические материалы, способные к обмену входящих в их состав ионов на ионы контактирующего с ними раствора, называются ионитами. Иониты, содержащие подвижные катионы, способные к обмену, называются катионитами, а обменивающие анионы — анионитами. Наибольшее практическое значение для очистки воды имеют органические полимерные иониты, которые являются полиэлектролитами. В этих соединениях одни ионы (катионы или анионы) фиксированы на углеводородной основе (матрице), а ионы противоположного знака являются подвижными, способными к обмену на одинаковые по знаку заряда ионы, содержащиеся в растворе. [c.80]


    В воде иониты обладают ионной электропроводностью, которая обусловлена наличием подвижных ионов в ионных атмосферах ионитов. Мембраны, изготовленные из ионообменных смол, также обладают ионной электропроводностью и, находясь во влажном состоянии, ведут себя аналогично водным растворам сильных электролитов, поэтому могут применяться в качестве электролитов ТЭ. В зависимости от типа применяемой для изготовления мембраны смолы различают катионообменные и анионообменные мембраны. В катионитовых мембранах заряды переносятся катионами, в аяиони-товых мембранах — анионами. По методу изготовления и структуре мембраны подразделяются на гомогенные и гетерогенные. Гомогенные мембраны состоят из однородной тонкой пленки ионообменной смолы на поддерживающей сетке из инертного материала. Гетерогенные мембраны представляют собой пленки, состоящие из смеси тонко измельченной ионообменной смолы со связующим инертным материалом,. имеющим высокую химическую стойкость, достаточную механическую прочность и хорошую эластичность. Связ ющими материалами служат каучук и некоторые полимеры. Толщина ионообменных мембран составляет 0,1—1,0 мм. Гомогенные мембраны имеют более высокую электрическую проводимость, но меньшую механическую прочность, чем гетерогенные мем- [c.85]

    Подгруппа Illa включает в себя лантаниды. Среди продуктов деления имеется очень много представителей этой подгруппы, включая иттрий и редкоземельные элементы от лантана до диспрозия. Кроме небольших различий в окислительно-восстановительных свойствах, эти элементы в химическом отношении очень похожи друг на друга. До начала осуществления программы исследований по атомной энергии известные мето.ды разделения этих элементов были очень медленными и утомительными. Практически радиоактивные изотопы, период полураспада которых меньше нескольких месяцев, распадаются до того, как закончится разделение. Используя различия в стойкости комплексов этих элементов, не сорбирующихся катионообменной смолой, можно разделить смесь ионов редкоземельных элементов в колонке со смолой. Они селективно элюируются раствором, содержащим анион лимонной кислоты или другой комплексообразующий анион, в порядке убывания атомного номера. [c.77]

    Высокие требования к чистоте материалов предъявляются в сцин-тилляционной технике. Химические дефекты в монокристаллах Nai—T1I, sl—Nal, sl—Til влияют на их сцинтилляционные свойства вследствие конкуренции в поглощении возбуждающей радиации между ионами активатора и примеси, реабсорбции примесными центрами люминесценции активатора и появления примесных центров свечения. Све-товькод детекторов на основе монокристаллов Nal—T1I заметно снижается при увеличении массовой доли меди от 1-10 до 7 10 % и никеля от 5 10 до 5 10 % [14]. Отмечено падение световыхода и ухудшение энергетического разрешения сцинтилляторов за счет изменения анионного окружения ионов активатора и образования комплексов активатора с кислородсодержащими анионами [15]. Являясь центрами захвата носителей заряда, посторонние примеси снижают радиационную стойкость сцинтилляционных детекторов [16]. Собственный радиоактивный фон сцинтилляционного детектора ограничи- вает возможность его применения для регистрации слабых активностей. Этот фон определяется, в частности, присутствием в игаодном сырье примесей актиноидов [17, 18], а также калия и рубидия, имеющих естественные радиоактивные изотопы ( К и Rb). Максимально допустимая удельная скорость распада каждого радиоактивного изотопа Пр, ч кг связана с массовой долей соответствуюпюго элемента в веществе ( j, %) следующим соотношением  [c.10]


Смотреть страницы где упоминается термин Химическая стойкость ионитов аниониты: [c.31]    [c.293]    [c.216]   
Ионообменные высокомолекулярные соединения (1960) -- [ c.123 , c.125 , c.127 , c.131 , c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Аниониты химическая стойкость

Иониты аниониты

Химическая ионная

Химическая стойкость ионитов



© 2025 chem21.info Реклама на сайте