Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель пирометаллургическая переработка

    В результате пирометаллургической переработки никелевых концентратов получают черновой никель, из которого отливают аноды. Наряду с никелем в анодах содержатся примеси, в % (масс.) 4,0—6,5 Си, 1,0—2,2 Со, 0,5—2,5 Fe, а также некоторые другие элементы, которые при растворении анода переходят частично или полностью в раствор и могут выделяться на катоде, загрязняя катодный металл. Для предотвращения загрязнения катодного никеля, катодные никелевые основы (тонкие листы никеля) помещают в отдельные ячейки, состоящие из каркаса, обтянутого диафрагменной тканью. В процессе электролиза никель наращивают на катодных основах, причем в каждую катодную ячейку подают очищенный раствор никелевого электролита, который фильтруется через диафрагму в анодное пространство, препятствуя проникновению к катоду примесей. Продолжительность наращивания катодного осадка 3—6 сут. [c.259]


    Как видно из рис. 4.1, в процессе пирометаллургической переработки никелевых руд железо отделяется от основных компонентов в результате плавки штейна в конверторе с продувкой воздуха. Плавка часто осуществляется таким образом, чтобы в шлак выводилось не все железо, а часть его оставалась в штейне. При этом в штейне удерживается и кобальт, что позволяет позже, в процессе рафинирования никеля, выводить при очистке раствора соединения кобальта и в дальнейшем перерабатывать их. Иногда кобальт специально переводят в конверторный шлак, из которого его затем извлекают. Поскольку оксиды меди и никеля в конце продувки будут взаимодействовать со своими сульфидами по реакции N 384 -Ь 4№0 --I- 250  [c.404]

    Никель получают главным образом из медно-никелевых сульфидных руд. Выделение никеля из руд — сложный многостадийный процесс. В результате ряда пирометаллургических операций получают NiO, Свободный металл выделяют, восстанавливая NiO (чаще всего углем). Очищают никель электролитическим рафинированием в растворе сульфата. Попутно образуется анодный шлам, из которого путем сложной переработки выделяют присутствующие в нем в качестве примеси платиновые металлы, серебро и золото. [c.608]

    При переработке никелевых руд пирометаллургическим способом драгоценные металлы целик ом переходят в никель или медь, откуда их извлечение невозможно без применения электролитического рафинирования. [c.289]

    Медь, получаемая из сульфидных руд пирометаллургическим способом, содержит около 1 % примесей — таких, как никель, сурьма, свинец, теллур, селен, висмут, мышьяк, сера, золото, серебро, а в ряде случаев и металлы платиновой группы. Наличие в меди даже небольших количеств примесей сильно понижает ее физические свойства (например, электрическую проводимость, пластичность и др.). Для получения меди высокой чистоты из пирометаллургической меди и попутного извлечения из нее благородных металлов в продукт, удобный для дальнейшей переработки, ее подвергают электрохимическому рафинированию. В настоящее время около 90 % всей добываемой меди обрабатывают таким образом. [c.120]

    Мировое производство металлического кобальта составляет 10— 20 тыс. т в год. Эта относительно малая величина характеризует дефицитность кобальта, подчеркивает его важность как стратегического материала, в частности для оборонной техники. (Никель значительно менее дефицитен, чем кобальт.) Получают металлический кобальт из сульфидных минералов путем их пирометаллургического передела, с последующей гидрометаллургической переработкой. [c.137]


    Важнейшей народнохозяйственной проблемой является переработка шлаков пирометаллургических производств. Шлаки содержат оксиды кремния, алюминия, кальция, магния, железа, марганца, меди, никеля, кобальта, свинца, кадмия, редких металлов и других элементов. Состав шлаков зависит от вида сырья металлургического процесса. [c.724]

    В природе никель встречается главным образом в виде сульфидных и окисленных руд. В сульфидных рудах кроме никеля содержатся медь, железо, кобальт и платиновые металлы. Никелевый концентрат подвергают пирометаллургическои переработке и после плавки получают медно-никелевый штейн. Из штейна после последующей пирометаллургическои переработки и отделения сульфида м ди выплавляют черновой никель, содержащий 1,5—6,0% Си, 0,5 —2,5% Ре, 0,5—2,0% Со и 0,5—2,0 5. Его разливают в аноды для последующего электрорафинирования. Из окисленных руд после пирометаллургической переработки получают более чистый никель, который, однако, тоже электролитически рафинируют. [c.306]

    Во многих случаях в процессе пирометаллургической переработки никелевых руд (или рудных концентратов) преследуют цель получить сырой пек (состоящий из сульфидов никеля, меди и железа), затем конверторный (бессемеровский) пек и, наконец, сырой никель, содержащий 95—98% металла. Гидрометаллургическим методом перерабатываются концентраты сульфидов никеля, гидросиликатные никелевые руды, сульфидные или арсенидные пеки никеля, меди и железа. Для отделения никеля от меди, кобальта и железа нз растворов их солей применяют электролитический метод или используют ионообменные смолы. [c.583]

    Никель в природе встречается в виде сернистых и окисленных руд. Сульфидные руды, кроме никеля, содержат всегда медь, кобальт, железо и платиновые металлы. Чтобы извлечь никель, руду или концентрат подвергают пирометаллургической переработке. После плавки их в электрических, шахтных или отражательных печах получают медно-никелечый штейн. Из штейна после последующей пирометаллургической переработки и отделения сульфида меди выплавляют черновой никель, содержащий 1,5—6% Си, 0,5—2,5% Fe, 0,5—2,0% Со, 0,5—2,0% S. Его разливают в формы. Полученные таким образом аноды электролитически рафинируют. [c.386]

    Содержание никеля в земной коре не превышает 0,01 7о, в разрабатываемых рудах — от 0,3 до 1,0%. Никель извлекают из руд при шахтной плавке с помощью пирометаллургических процессов. Руду обрабатывают в шахтной печи в присутствии гипса (суль-фидирующий агент), известняка (флюсующий агент) и кокса (восстановитель), Цель шахтной плавки, осуществляемой прн температурах (в зависимости от зоны в печи) от 600 до 1400—1500°С,— максимальное извлечение никеля в штейн и отделение штейна от пустой породы, переводимой в шлак (за счет разности плотностей). При отсутствии сульфидирующего агента получаются тугоплавкие соединения (сплавы), дальнейшая обработка которых значительно сложнее и более трудоемка, чем переработка штейна. [c.107]

    В заводской лаборатории проводили работы по пирометаллурги-ческому переделу никельсодержащего шлама, так как при 800—1000 °С идет разложение карбонатов и гидрокарбонатов с образованием окислов никеля. За основу пирометаллургического передела взяли схему переработки окисленньгх никелевых руд. [c.74]

    Гндроэлектролитическая переработка медно-никелевого файнштейна. Сложность пирометаллургического разделения файнштейна на медь и никель заставила искать других путей переработки файнштейна. Из многих предложенных гидрометаллургических способов промышленное применение нашел только способ, описанный ниже. [c.491]

    Получение и использование. Производство железа и его сплавов стало основой современной нам цивилизации. Примерно 90% всех используемых сейчас металлов и сплавов приходится на долю сплавов железа. Кобальт и никель встречаются чаще всего в с тьфпдных и арсенидных рудах и получаются при комплексной переработке минерального сырья с применением пирометаллургических (обжиг) [c.374]


Смотреть страницы где упоминается термин Никель пирометаллургическая переработка: [c.43]    [c.139]   
Технология электрохимических производств (1949) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте