Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никеля сплавы электролитическое выделение

    Этот метод используют для отделения микроколичеств А1, В, Са, М , Ti, V, XV и РЗЭ при анализе железа, сталей, никеля и других металлов и сплавов. Например, менее 10 г/г РЗЭ в нержавеющей стали отделяли от элементов основы и определяли атомно-эмиссионным методом [451]. Выделение матричных элементов электролизом на ртутном катоде использовано при атомно-абсорбционном определении алюминия в железе и его сплавах [452]. При выделении менее 10 г/г бора из никеля электролизом на ртутном катоде в качестве анода используют саму пробу [453]. Охлаждаемый водой платиновый тигель с небольшим количеством донной ртути служит электролитической ячейкой. Растворение пробы в 0,01 М серной кислоте и осаждение матричного элемента происходит одновременно. При этом не возникает опасности загрязнения материалом анода. Кроме того, загрязнения, обусловленные примесями в самой серной кислоте, меньше, чем в обычном методе, где требуются большие ее количества для растворения металла. После завершения электролиза бор определяют спектрофотометрически. Этот же метод был применен при полярографическом определении до 0,3 10 г/г алюминия в железе [454]. В этом случае в качестве электролита использовали 0,5 М раствор хлорной кислоты. [c.81]


    Электролитическое растворение применяется для перевода в раствор кобальта из металлических или сульфидных кобальтсодержащих сплавов. Основными компонентами таких сплавов, кроме кобальта, являются железо, никель и медь. Анодное растворение металлических сплавов производится в подогретом растворе серной кислоть[. При этом на катоде основным процессом является выделение водорода. Кобальт, никель и железо из-за большой катодной поляризации в кислом растворе полностью остаются в электролите. Медь, растворившаяся на аноде, почти нацело осаждается на катоде, поэтому растворы, полученные анодным растворением, практически не содержат меди, что облегчает последующую их переработку. По мере электролиза раствор становится все менее кислым. Процесс прекращают, когда достигается почти полная нейтрализация электролита. [c.95]

    При электролитическом выделении никеля из раствора 1 г сплава, содержащего 9,63% никеля, в течение ШО мин при токе 1,5 а в выделенном металле в виде примеси оказался кобальт. [c.143]

    В 1902 г. Броун также применил электролитический способ отделения меди от никеля, используя двухстадийный электролиз. Аноды из медноникелевого сплава, получавшиеся в результате обжига штейна и последующего восстановления огарка до медноникелевого сплава, подвергали электролитическому рафинированию в хлористых растворах. Растворы готовили хлорированием гранулей сплава при орошении их раствором поваренной соли и хлористого никеля. Раствор подвергали электролизу с медно-никелевым анодом, на катоде осаждалась медь и частично выделялся водород. Электролит, обедненный медью, дополнительно очищали от меди электролизом с нерастворимыми угольными анодами. Затем раствор поступал на электролиз с угольными анодами для выделения никеля из раствора его хлорида. При этом выделявшийся на аноде хлор использовали в оросительных башнях для хлорирования гранулей сплава. [c.290]

    В виде сплавов с никелем германий электролитически извлекают из аммиачно-оксалатных растворов даже при концентрации германия, равной или меньшей 5 мг-л . Количественное извлечение достигается при отношениях в растворе Ni Ge, меньших, чем отношения Си Ge при выделении сплавов германия с медью, а при концентрации германия 130 количественное осаждение его отмечается уже при отношении Ni Ge=l,35. [c.284]

    Материальный баланс электролитического аффинажа сплавов своеобразен. Например, при переработке сплава с 80% Си и 20% N1 на 1 т катодной меди получается в качестве побочного продукта 1 т семиводного сульфата никеля. Процесс электролиза основан на непрерывной регенерации раствора с периодическим отбором части его на выделение сульфата (см. [c.214]


    Судить о структуре того или иного образующегося на катоде сплава можно не только на основе данных рентгенографического анализа или данных металлографических исследований, но и на основе поляризационных измерений. Дело в том, что образование твердых растворов оказывает деполяризующее действие на осаждение металлов, т. е. потенциал выделения каждого из металлов в отдельности отрицательнее, чем потенциал, при котором идет образование сплава (при образовании твердого раствора потенциальная энергия его компонентов уменьшается). Эта разница может быть настолько большой, что на катоде разряжаются ионы металлов, осаждение которых в чистом виде вообще невозможно из водных растворов. Примером может служить электролитическое получение сплавов вольфрама с никелем, железом и другими металлами, в то время как чисто вольфрамовые покрытия получить не удается. Осаждение сплавов Си—2п, Аи—Ag, Си—5п, Ре—Сг и многих других происходит в виде твердых растворов. В тех случаях, когда кристаллизация осаждаемых на катоде металлов происходит раздельно, осаждение сплава начинается только после достижения потенциала выделения более благородного металла. Так происходит осаждение сплавов Си—Аи, С(1—Ag и некоторых других. [c.295]

    Определение никеля в электролитах для никелирования методом осаждения диметилдиоксимом [40] описано наряду с другими более экспрессными методами в монографии [106]. Более быстрый метод электролитического осаждения применяется редко [319]. Чаще всего используются метод титрования диметилдиоксимом [319] или комплексоном III [4, 384, 554, 662, 838, 926]. Первым методом определяют никель в присутствии других металлов. Второй метод может быть использован иногда без предварительного выделения никеля [384, 926], но чаще, например, как это рекомендуется при анализе ванн для покрытия цинко-пикелевым сплавом, никель вначале отделяют в виде диметилдиоксимата и затем уже определяют комплексонометрически [5]. [c.152]

    На чистых металлах перенапряжение выделения водорода, очевидно, слабо зависит от структуры образующегося осадка и монотонно возрастает с увеличением плотности тока. При электроосаждении сплавов, напротив, перенапряжение выделения водорода зависит от их состава. Поскольку при каждом потенциале образуются сплавы различного состава, на них перенапряжение выделения водорода может изменяться не монотонно. Например, на сплавах железо — никель перенапряжение выделения водорода изменяется на 400 мВ при увеличении массовой доли никеля от 20 до 90 %. Последнее может приводить к сложному характеру зависимости вы.хода по току от плотности тока. Это особенно следует ожидать для сплавов, состоящих из металлов с высоким и низким перенапряжением выделения водорода, например цинк — железо, цинк — никель и др. Реакции выделения водорода приводят, помимо снижения выхода по току, к подщелачиванию при-электродного слоя, что в свою очередь влияет на скорость реакции, а также на структуру и свойства электролитических осадков. Типичный вид зависимости pH прикатодного слоя от pH в объеме электролита приведен на рис. 2.1. [c.37]

    Диметилдиоксим первым из диоксимов применялся для экстракционного отделения никеля [П06, 1201]. от диоксим часто используется в аналитической практике для отделения и концентрирования малых количеств никеля при анализе металлов, сплавов и солей алюминия и алюмосиликатов [931], железа [1004, 10491, кобальта и его солей 11002], урана и его сплавов [334, 12061, чистого электролитического хрома [324], сплавов на основе циркония 11061], кадмия [206] и многих других металлов и сплавов [563, 842]. Экстракция диметилдиоксимата никеля применяется также при анализе перхлоратных растворов легированных сталей [8461, содержа-Ш.ИХ хром, молибден, ванадий, никель, растворов электролитических ванн [678а1, цинковых электролитов для получения цинка [8641 и дpyfиx объектов [16, 5591. Описаны методы экстракционного выделения никеля при помощи диметилдиоксима из руд [429, 8151, медных солей [10011, галогенидов щелочных металлов [45] и из различных биологических материалов [404, 6771. [c.58]

    Метод электролиза применяется в техническом анализе специальных сталей и сплавов как для определения, так и для отделения никеля. Лучше всего никель выделяется электролитически из аммиачного раствора, когда весь он находится в форме аммиачного комплексного соединения. Для повышения электропроводности раствора обычно добавляют сульфат аммония. Концентрация аммиака должна быть достаточной для предотвращения выделения гидроокиси никеля. Свободные минеральные кислоты (НС1 или HNO3), применяемые для растворения образца, удаляют выпариванием с H2SO4 в платиновой или кварцевой чашке, к остатку прибавляют воду, раствор нейтрализуют аммиаком и добавляют 3—5 г сульфата аммония. В растворе должны отсутствовать, кроме кобальта, ионы меди, цинка, серебра, также образующие аммиакаты они выделяются вместе с никелем. [c.81]


    Изыскание путей снижения величин перенапряжения выделения водорода привлекало внимание многих исследователей. Исследования возможности снижения потенциала катода проводились в нескольких направлениях и заключались в подборе металла или сплава для катода или способа нанесения электролитического покрытия на железную основу катода для образования его поверхности, работающей с пониженным перенапряжением выделения водорода. Предлагалось покрытие катодов сернистым никелем с содержанием 16—28% серы и гальваническое покрытие их вольфрамоникелевым сплавом предложено изготовлять катоды из стали, легированной вольфрамом, ванадием и молибденом. [c.43]

    С помощью внутреннего электролиза в работе [67а, 69] проводили определение В1, РЬ, Рс1, 5п и Т1 в чистом цинке и цинковых сплавах в интервале концентраций 0,1—0,0001% и свинец в железе в области 0,1—0,0001% в первом случае0,5— 2 г образца цинка растворяли в разбавленной соляной кислоте и проводили электролитическое осаждение примесей на стержне из чистого цинка диаметром 6 мм. Спектры возбуждались в дуге переменного тока при винтообразном передвижении нижнего цинкового электрода с осажденными примесями верхний электрод из алюминия. Внутренним стандартом при анализе сплавов служит медь, а при анализе металлического цинка — никель. Электролитическое осаждение свинца проводили на кадмиевом стержне. Спектры возбуждались в искре. Ошибка при концентрации свинца 0,0001% составляет 8%. Подобный метод применяли [64] при определении малых количеств ртути в растворе (осаждали ее на чистом цинковом электроде), при определении золота и других благородных металлов [65], при анализе чистого алюминия и в других случаях [66, 68]. Имеются спектральные методы выделения большого числа металлов Ре, Сг, №, Со, 2п, Си, Мо, 5п, Т1, С(1, В1 и т. д., при обогащении пробы путем электролиза на поверхности ртутного катода [70—72, 444]. [c.15]

    Однако, кроме указанных ионов, в электролите находятся и ряд других катионов и анионов далее, в электролитических ваннах используются не нормальные водородные электроды, а электроды, выполненные из различных материалов и сплавов (графит, сталь, медь, никель и др.)- По этим причинам для выделения фтора необходимо создание высокого перенапряжения. Практически электролиз проводят при разности потенциалов 4—8 в. При таких разностях потенциалов выделяющиеся на лнодной поверхности радикалы фтора полностью используются в анодном пространстве электролитической ванны. Если разность потенциалов увеличить до 10 в и более, то выделяется элементарный фтор, что приводит к энергичной коррозии материала анода и к. сильному разложению фторируемого органического соединения кроме того, в отходящих газах будет содержаться некоторое количество элементарного фтора, что может привести, к взрыву. [c.349]


Смотреть страницы где упоминается термин Никеля сплавы электролитическое выделение: [c.159]    [c.798]    [c.799]    [c.352]   
Методы разложения в аналитической химии (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Сплавы никеля

Сплавы никеля Jt И h I Сплав

Сплавы электролитическое выделение



© 2025 chem21.info Реклама на сайте