Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Арены ароматические углеводороды алкилирование

    Ароматические углеводороды. При относительно низких температурах, которые характерны для термического крекинга, ведущегося с целью получения бензина, ароматические углеводороды почти не синтезируются. И если в продуктах такого крекинга и присутствуют простейшие ароматические соединения, то это можно объяснить скорее расщеплением смешанных ароматических молекул исходного сырья. К числу последних относятся простейшие алкилированные одноядерные компоненты, подвергающиеся деалкилированию или более сложные смешанные молекулы, которые содержат нафтеновые кольца и конденсированную аро-матику. Экспериментальным подтверждением этого положения могут служить ранние работы Брукса (Brooks [58]), который подвергал крекингу при 425° С облегченное сырье в составе бензиновых продуктов имелись простейшие ароматические углеводороды. При этом не было получено такого количества водорода, [c.301]


    Бензин, полученный из нефти простой перегонкой (разд. 8.2.1), имеет октановое число от 50 до 55 и непригоден для непосредственного использования в двигателях. Бензин более высокого качества получается при крекинге его октановое число составляет 70—80 в зависимости от типа крекинга. Поскольку для современных высококомпрессионных двигателей требуется топливо с октановым числом по крайней мере около 90, нужно было разработать методы улучшения бензинов, добываемых как непосредственно из нефти, так и крекингом. Иногда октановое число увеличивают, добавляя соединение, которое само имеет высокое октановое число [например, некоторые арены или тетраэтилсвинец РЬ(С2Нб)4] (разд. 9.8.1.1). Бензин улучшают также химическим путем, так называемым риформингом и алкилированием. Риформинг заключается в изомеризации, при которой неразветвленные или малоразветв-ленные алканы при нагревании с подходящим катализатором (например, оксидами молибдена, алюминия, галогенидами алюминия, платиной на оксиде алюминия) превращаются в более разветвленные алканы илн в ароматические углеводороды с большим октановым числом, чем октановое число исходных алканов. Превращение неразветвленных алканов в разветвленные можно схематически представить следующим образом  [c.280]

    Незамещеш1ые соединения ароматических углеводородов в условиях процесса риформинга устойчивы. Алкилированные арены подвергаются изомеризации по положению заместителей, диспропорционированию и деалкилированию. [c.11]

    Выходы целевых продуктов из замещенных кумолов, содержащих в бензольном кольце два заместителя, как правило, оказываются ниже. Замещенные кумолы и н-пропилбензол, содержащие заместитель в о-по-ложении к пропильной группе, в изученных условиях с серой не реагируют. Вследствие этого получить арил-1,2-дитиол-З-тионы из о-цимола, о-метил-н-пропилбензола, 2,5-дихлор-, 2,5-диметил- и 2,5-диметокси-кумола не удалось. Такое ограничение синтетических возможностей реакции осернения алкилбензолов представляет и определенный практический интерес, так как дает возможность использовать продукты алкилирования соответствующих ароматических углеводородов, являющиеся смесью л- и 0-изомеров, для получения индивидуальных соединений. о-Изомеры в реакцию не вступают и играют роль растворителя. Исключение составляет метиловый эфир тимола, содержащий в о-положении к изопропиль-ному радикалу метоксигруппу. Он образует с серой соответствующий 1,2-дитиол-З-тион с выходом 40%. [c.244]

    К типу указанных процессов относятся также описанные в следующих предложениях. Ароматические углеводороды, например бензол, нафталин или их производные (сульфо-, амино-, галоидосоединения) добавляют к веществам типа X СНз — (R) = СНз (где R —алкил или арил X — галоген) и получают смолы, растворимые в углеводородах, если реакцию проводят в присутствии А1С1з или ВРз при этом наряду с алкилированием частично происходит полимеризация. Можно проводить поликонденсацию кетокислот формулы НООС R СО R Y А X (где R — алифатический или ароматический остаток углеводорода с двумя атомами С R — арильная группа А — алкилен- или полиалкиленэфирный остаток с 2 атомами С X = ОН Y — ацил или галоген. При этом образуются смолы, растворимые в этаноле и ацетоне. Пример 3-хлорэтоксиэфирооксибензил-о-бензойную кислоту, нейтрализованную щелочью, нагревают в автоклаве 6 час. при 150—200° . [c.559]


    Б. Алкилирование бензола. Г омологи бензола обладают комплексом ценных качеств. В связи с этим вопросу алкилирования бензола уделяется значительное внимание. Для синтеза алкилбензолов был предложен ряд методов воздействие натрия на смесь бромо-производных бензола и алкана, реакция Гриньяра, гидрирование алкил-арил-кетонов, конденсация спиртов с бензолом (Цукерваник), алкилирование бензола алкильными эфирами кислот, алкилирование ароматических углеводородов галоидалкилами, парафинами (Ипатьев с сотрудниками) и конденсация олефинов с бензолом. Промышленное применение имеет последний метод. [c.278]

    Во многих системах Фриделя — Крафтса, например содержащих бромиды алюминия или галлия, алкилирование ароматических соединений происходит в гомогенном растворе как в неосновных, так и в основных растворителях. Однако в системах, содержащих трехфтористый бор и фтористый водород, а также хлористый алюминий и хлористый водород, если в качестве растворителей использовать углеводороды или другие неосновные соединения, образуются два жидких слоя. Один из этих слоев является кислотно-солевым и содержит все взятое количество бора или алюминия, именно в этом слое-происходит реакция. Второй слой — органический, он содержит органические реагенты и продукты реакции, если они не слишком сильно основны. Способность арена переходить в кислотно-солевой слой зависит от основности арена, а также от температуры, так как при повышении температуры умень-пшется солеподобная сольватация арена, и последний возвращается в углеводородный слой (частное сообщение Д. Пирсона). [c.300]


Смотреть страницы где упоминается термин Арены ароматические углеводороды алкилирование: [c.674]    [c.1102]    [c.162]    [c.131]    [c.609]    [c.878]    [c.162]    [c.162]   
Основы органической химии 2 Издание 2 (1978) -- [ c.183 , c.191 , c.194 ]

Основы органической химии Ч 2 (1968) -- [ c.129 , c.137 , c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Арены

Углеводороды арены



© 2025 chem21.info Реклама на сайте