Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитического крекинга типы углеводородов

    Однако, такая постановка задачи представляется неправомерной по следующим соображениям. Прежде всего, в зависимости от режима в рефлюксной емкости Е1 с нестабильным бензином увлекается часть легких фракций (Сз—С4), а часть углеводородов Сб и выше уходит с жирным газом. Так, хроматографический анализ жирного газа и нестабильного бензина на промышленной установке каталитического крекинга типа 43-103 [127] показал, что в проведенном эксперименте содержание фракций С5 и выше в жирном газе изменялось в пределах 20,1—39,5% (масс.), а содержание фракций ниже С5 в нестабильном бензине составило 2—11% (масс.). Таким образом, измерение расхода нестабильного [c.138]


    Поведение углеводородов различи].1х типов при каталитическом крекинге систематически изучали многие исследователи [(541. Как уже сообщалось, прн каталитическом крекинге индивидуальных углеводородов [c.262]

    Жидкие продукты. Жидкие продукты получаются в основном в результате каталитического крекинга высокомолекулярных углеводородов различных типов. Алканы высокого молекулярного веса образуют жидкие продукты предельного и непредельного характера. При распаде низкомолекулярных алканов выход газа больше, чем выход бензина. Это объясняется плохой креки-руемостью низкомолекулярных алканов поэтому для достижения требуемой глубины разложения крекинг необходимо ужесточать. При одинаковой глубине крекинга по мере увеличения молекулярного веса алканов выход бензина возрастает. С повышением молекулярного веса алкана увеличивается и выход алкенов. Характерно, что температура кипения самых высококипящих продуктов, ниже температуры кипения сырья. [c.19]

    Каталитический крекинг. При каталитическом крекинге расщепление углеводородов осуществляется на алюмосиликатах — типичных катализаторах ионных реакций. В их присутствии реакции расщепления идут не по свободнорадикальному механизму, как при термическом крекинге, а по ионному, через промежуточную стадию положительно заряженных карбокатионов. Последние образуются из олефинов, которые получаются хотя бы в небольшом количестве при термическом распаде сырья, и протонов, генерируемых катализатором кислотного типа  [c.39]

    Каталитический крекинг олефиновых углеводородов в принципе аналогичен крекингу парафинов с той лишь разницей, что крекинг олефинов происходит легче. Для крекинга олефинов характерно то, что значительная часть продуктов крекинга представляет собой изомеры исходного углеводорода. Совершенно другая картина наблюдается при крекинге парафиновых углеводородов, при котором происходит изомеризация только продуктов крекинга. Поэтому, очевидно, что внутримолекулярная перегруппировка в непредельном карбоний-ионе включает перенос водорода, и при этом проявляется тенденция к образованию более стабильного иона. Следовательно, реакции типа (191) вполне возможны. [c.374]

    Реакторы без внешнего обогрева с движущимся шариковым катализатором. Способ дегидрирования парафиновых углеводородов, и в том числе н-бутана, на установках с движущимся шариковым катализатором впервые был разработан в СССР . В конструктивном отношении эти установки аналогичны установкам каталитического крекинга (типа термофор ). [c.157]


    Хотя водородный обмен углеводорода с системой катализатор—вода и каталитический крекинг углеводорода не представляют собой одну и ту же реакцию, однако весьма вероятно, что в обоих процессах тип активации один и тот же. Данные Гринсфельдера и его сотрудников по вопросу о крекинге чистых углеводородов ясно показывают, что энергия активации каталитического крекинга предельных углеводородов зависит от относительной легкости переноса водорода между углеводородами. Так, углеводороды, содержащие третичный водород, претерпевают крекинг с наибольшей скоростью в соответствии с особенно большой легкостью отрыва Н при образовании активированного комплекса углеводород-катализатор, обусловливающего ход реакции. При 550° скорости отрыва иона Н" от первичного, вторичного и третичного углерода относятся как 1 2 20 [48]. [c.32]

    В четырех предыдущих статьях [1, 2] описан каталитический крекинг индивидуальных углеводородов и проведено сравнение каталитического крекинга различных классов углеводородов парафиновых, нафтеновых, олефиновых и ароматических, широко отличавшихся как по типам структур, так и но молекулярным весам. [c.101]

    Хотя промышленный каталитический крекинг протекает с большой скоростью при высоких температурах и сопровождается некоторыми типичными реакциями разложения, реакции с ионом карбония не требуют высоких температур. Известно, что низкие телшературы благоприятствуют реакциям полимеризации. Реакциями такого типа, проводимыми над кислыми силикатными катализаторами, наиболее вероятно могкно объяснить образование ароматических углеводородов при низких температурах, что делает понятным их присутствие в нефтях. [c.89]

    Хроматографическая методика, используемая в сочетания с ректификацией и ультрафиолетовой абсорбцией, была применена для количественного анализа различных типов ароматических углеводородов в газойлевых фракциях и во фракциях каталитического крекинга [8, 17, 221., Степень замещения ароматического ядра можно определить, если использовать инфракрасные спектры поглощения и значения молекулярных весов. Таким образом, получаются количественные соотношения для углеводородов с различным числом ароматических ядер. [c.286]

    В настоящее время продукты каталитического и термического крекингов чистых углеводородов изучены достаточно хорошо, что позволяет дать детальную характеристику этих процессов. По-ясно наблюдаемой разнице в составе продуктов можно установить наличие двух типов разрыва углерод-углеродной связи. Как будет показано ниже, для каталитического крекинга типичным является ионное (с участием иона карбония) гетеро-литическое расщепление связи С—С, что выражается следующей электронной схемой  [c.114]

    В качестве исходного пункта для детального развития теории каталитического крекинга разложение трех главных типов углеводородов, содержащихся в нефти, мояшо выразить следующими обобщенными простыми стехнометрическими уравнениями  [c.117]

    Таким образом, можно отметить следующее в существующих и разрабатываемых процессах термодеструктивной переработки нефтяных остатков (гудрон) в больших количествах образуются тяжелые газойли, которые характеризуются достаточно высоким содержанием парафино-нафтеновых углеводородов и поэтому являются потенциальным сырьем каталитического крекинга. Однако они требуют подготовки с целью снижения коксуемости, а для остатков процессов типа термического крекинга и содержания металлов. [c.108]

    Реакции такого типа преобладают в каталитических крекинге и риформинге (см. гл. IX). Каталитическим дегидрированием циклогексана и метилциклогексана получают, соответственно, бензол и толуол [264, 265]. С подходящими нафтеновыми дистиллятами процесс применим и в промышленности. Полициклические нафтеновые углеводороды можно превратить в отвечающие им ароматические углеводороды нагреванием до 450° С в присутствии хромо-алюминиевого катализатора [266]. При дегидрировании сольвент-экстракта керосина образуются дифенил и некоторое количество метилнафталинов [267], что указывает на присутствие в исходном дистилляте соответствующих нафтенов или их алкилпроизводных. [c.102]

    Углеводороды разных типов обнаруживают существенные различия при каталитическом крекинге. Эти различия обсуждаются здесь довольно подробно. [c.326]

    На важные характеристики процесса каталитического крекинга — степень конверсии и выхода продуктов влияют все обычные условия процесса тип катализатора, отношение катализатор — сырье, объемная скорость, температура, давление, присутствие пара и природа сырья [122]. Как показывает опыт, экономически выгодной является степень конверсии 50% за один проход. Она, очевидно, возрастает при увеличении количества или активности катализатора, повышении температуры и увеличении времени контакта. Степень конверсии в некоторой мере влияет на распределение продуктов для упомянутой выше конверсии 50% получается водорода — 0,1, углеводородов С и Са — 1—2 и отложений кокса — 3—5% весовых от исходного сырья. Повышение температуры вызовет увеличение всех этих цифр, увеличение выхода углеводородов Сд — С4, повышение октанового числа бензина, но снизит выход бензина. [c.343]


    Селективная способность — одно из наиболее замечательных свойств цеолитов. В отличие от обычных катализаторов, цеолиты имеют два типа пор одни определяются размерами пор кристалла цеолита, другие — внутрикристаллической системой, существующей и в промышленных катализаторах крекинга. В зависимости от кристаллической структуры и формы пор цеолиты обеспечивают высокую селективность (избирательность) каталитического крекинга. Например, цеолиты с маленькими порами (4 и 5 А для типа А) эффективны в реакциях, в которых участвуют реагенты с небольшими размерами молекул такие цеолиты избирательно действуют только на пропилен, если, например, он находится в смеси с изобутиленом. При селективном крекинге смеси парафиновых углеводородов на цеолитах, размер пор которых ненамного превышает 5 А, крекинг изопарафинов незначителен. При каталитическом крекинге с использованием цеолитов типа X и У, диаметр пор которых от 9 до 10 А, углеводородные молекулы частично крекируются на внешней поверхности кристалла цеолита, а образующиеся фрагменты подвергаются дальнейшему крекингу внутри полостей. [c.101]

    В результате громадного роста производства каталитического крекинга реакторы описываемого типа, непригодные для переработки больших количеств углеводородов, были вытеснены аппаратами с подвижным или псевдоожиженным слоем. Тем не менее они еще могут найти применение для различных реакций синтеза. [c.349]

    В последние годы интенсивно исследуются процессы каталитического крекинга в восходящем потоке катализатора, создаваемом параллельным скоростным потоком углеводородов. Гидродинамика восходящего потока изучена недостаточно. Сообщается [53]. что этот поток, как и поток в транспортной линии реактора с кипящим слоем, характеризуется идеальным вытеснением. В этом случае структурой математического описания (табл. Х-1) можно пользоваться и для восходящего потока. Однако в условиях высоких и близких линейных скоростей потоков катализатора и сырья определение вида ю требует анализа внешнедиффузионных эффектов (см. главу IX). Второе существенное обстоятельство, которое нужно учитывать для рассматриваемых типов аппаратов, — это блокирование поверхности микрозерен катализатора коксом (см. стр. 348). [c.373]

    Атмосферная перегонка нефти на таких установках осуществляется в одной колонне. Предпочтительным сырьем для них являются нефти с относительно невысоким содержанием бензиновых фракций и. растворенных газообразных углеводородов. Пример установки такого типа — ЭЛОУ-АВТ-7 со вторичной перегонкой бензина, запроектированная ВНИПИНефть по технологическому регламенту БашНИИ НП. Установка предназначена для обессоливания и перегонки 6—7 млн. т в год смеси нефтей. На установке вырабатывается следующий ассортимент фракций С,—С4 — сжиженный газ С5 — 90 °С — компонент автомобильного бензина 90—140 °С — сырье каталитического риформинга для производства высокооктанового компонента автомобильного бензина 140—250 °С — авиационное турбинное топливо 250—320 °С — легкий компонент дизельного топлива для скоростных двигателей 320—380 °С — тяжелый компонент дизельного топлива для скоростных двигателей (подвергается гидроочистке) 380—530 °С — сырье каталитического крекинга гудрон — сырье висбрекинга, для производства битумов. [c.73]

    Продукция. Качество продуктов каталитического крекинга изменяется в весьма широких пределах в зависимости от типа сырья, характеристик катализатора, технологического режима и т. д. Углеводородный газ крекинга обычно содержит 10—25% углеводородов С1—С,, 25—35% углеводородов Сд, 30—50% бутанов и бутенов, 10—20% фракций С5 и направляется на газо-фракционирование. После разделения сухой газ используется в качестве топливного газа, пропан-пропиленовая и бутан-бутиленовая фракции (ППФ и ББФ) — в качестве сырья для ал-килирования и нефтехимии, фракции С5 и выше возвращаются в состав бензиновой фракции. Содержание пропилена в ППФ может достигать 70—80%, бутиленов в ББФ — 45—55%, изобутана в ББФ — 40—60%. Содержание н-бутана в ББФ крекинга невелико и находится в пределах 10—20% [c.113]

    Основной источник получения пропилена — заводы по производству этилена, причем переход на более тяжелые фракции нефти (как сырье пиролиза) повышает его выход. Одним из промышленных методов получения пропилена является дегидрирование пропана на оксидных алюмохромовых катализаторах и катализаторах крекинга углеводородов. Бутен получают каталитическим крекингом бутана, газойля или легкого бензина. Пен-тены, получаемые в процессе переработки нефти и дегидрированием изопентана, рассматриваются в настоящее время как сырье, идущее на алкилирование бензола с целью получения поверх-ностно-активных веществ типа сульфона. [c.16]

    Реактор типа теплообменника. Реактор такого тина сооружается в форме большой камеры с реакционной трубой или трубчаткой, по которой подается газ. Внутри реакционных труб иногда находится катализатор. Этот реактор применяется при термическом и каталитическом крекинге углеводородов, при проведении реакций дегидрогенизации и т. д. [c.353]

    Преобладание изомерных соединений в продуктах гидрокрекинга объясняют также изомеризацией непредельных углеводородов, являющихся первичными промежуточными продуктами каталитического расщепления насыщенных углеводородов над катализаторами с носителями типа активных алюмосиликатов. Гидрирование непредельных углеводородов изостроения приводит к накоплению изопарафинов в продуктах гидрокрекинга. Эта схема образования избытка изопарафинов подтверждается экспериментальными данными, свидетельствующими о трудности непосредственной каталитической изомеризации нормальных парафинов [30] как первичной реакции гидрокрекинга. Кроме того, общеизвестна легкость и быстрота изомеризации олефинов над активными алюмосиликатами и легкость гидрирования получающихся изоолефинов даже за счет реакций дис-пропорционирования, характерных для каталитического крекинга. [c.43]

    Ароматические углеводороды. При каталитическом крекинге ароматических углеводородов на алюмосиликатах интенсивно протекают реакции деалкилирования, изомеризации, переноса алкильной группы и конденсации. Незамещенные ароматические углеводороды расщепляются слабо и склонны к конденсации. Разрыв связей С—С в метилбензолах также незначителен, и в продуктах обычно присутствуют метилбензолы с меньшим числом метильных групп, метан и углеводороды Сг—С4. Одновременно протекают реакции изомеризации метилбензолов типа превраще- [c.95]

    При сочетании методов разделения (ректификации, элюэнтной хроматографии, жидкостной термической диффузии) с физическими методами анализа масс-, инфракрасной и ультрафиолетовой спектроскопией, могут быть получены исчерпывающие сведения о составе исследуемых продуктов. Используя такие приемы, Мельпольдер, Браун, Юнг и Хедингтон [1378] исследовали состав бензинов, получающихся в процессе каталитического крекинга типа флюид . Они установили наличие 152 углеводородов и групп углеводородов, включая 20 индивидуальных олефинов, содержащих 8 и менее углеродных атомов в молекуле. Другим важным методом анализа смесей, состоящих из соединений известных типов, является газовая хроматография. Комбинация хроматографического и других методов с масс-спектрометрическим обсуждалась в гл. 5. [c.442]

    Углеводороды термиче- ский крекинг каталити- ческий риформинг каталитический крекинг типа коксо- вание термокон- тактный крекинг [c.41]

    Диены, содержащиеся в сырье, образуют сложные продукты взаимодействия с серной кислотой и остаются в кислотной фазе, рс збавляя кислоту, что увеличивает его расход. Поэтому диеновые углеводороды не должны содержаться в сырье. К сырью С — а/килирования предъявляются также повышенные требования по сс держанию влаги и сернистых соединений. Если сырье каталитического крекинга не подвергалось предварительной гидроочистке, тогда бутан — бутиленовую фракцию крекинга — сырье С — алкили — рования обычно очищают щелочью или в процессах типа Мерокс от сернистых соединений. [c.142]

    С никоторых пор стал возможен анализ ароматических углеводородов Се, С, и Сд в бензиновых фракциях. Однако для болео высококипящих фракций в настоящее время анализ на индивидуальные компоненты невозможен вследствие бо.11ьшого числа изомеров в данных пределах ки- пения и близости температур кипения углеводородов различных классов. При разработке процессов переработки нефти чрезвычайно важно знать состав высококипящих фракций, например исходных и конечных фракций каталитического крекинга. Особенно важно знать содержание различных классов ароматических углеводородов. Хроматография является превосходным методом их количественного разделения. Типы ароматических соединений во фракции можно определить по спектрам поглощения в ультра- [c.286]

    Кроме продуктов прямой гонки, из нефти посредством термических и каталитических процессов получаются различные синтетические топлива. Химический состав полученных таким путем синтетических топлив отличается от продуктов прямой гонки и зависит от характера процесса и условий. Наиболее важными синтетическими топливами, которые рассматриваются в этой главе, являются алкилаты, полимербензины, крекинг- и риформинг-бензипы и продукты гидрирования. Подобно продуктам прямой гонки синтетические топлива состоят преимущественно из углеводородов. Вообще в синтетических топливах имеется меньше неуглеводородных компонентов, чем в продуктах прямой гонки, особенно, в высококипящих фракциях. Такие топлива, как алкилаты, полимербензины и некоторые топлива, полученные гидрированием, почти нацело состоят из углеводородов. Некоторые виды синтетических топлив являются, в основном, парафиновыми или олефиновыми углеводородами, но обычно они содержат все типы углеводородов парафиновые, циклопарафиновые, ароматические и непредельные. Непредельность является характерным признаком полимербензинов и крекинг-бензинов. [c.48]

    В последние годы с развитием каталитического крекинга выяснилось., что некоторые катализаторы способствуют конденсации ароматических углеводородов. Так, Матокс и Гроссе [25] нашли, что толуол, пропущенный над алюмохромовым катализатором при 550° С, дает 1% антрацена за проход на 16% разложившегося толуола, и что при этом не получается фенантрен. При термическом крекинге дибензила обычно получается антрацен, однако в контакте с алюмохромовым катализатором были получены не антрацен, а стильбен, толуол и бензол. Тем не менее, большое отложение углерода порядка 14,5% показывает наличие ароматической конденсации обычного типа. [c.99]

    Для сопоставления торл]ичоского и каталитического крекинга в табл. 1 (табл. А [19]) принодятся нажнейшие типы диссоциаций и превращений угленодородов, наблюдаемых в рассматриваемых системах реакции. Такое сравнение каталитического и термического JipeкингoD углеводородов различных классов должно быть отнесено ире> де всего к соединениям, имеющим одинаковое число атомов углерода. [c.116]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    Показано, что продукт экстракции керосино-газой-леной фракции высокосернистой нефти обподненным пиридином может быть гидроочищен. После этого он станоиптся пригодным либо для каталитического крекинга, либо для высокотемпературной гидрогенизации с получением ароматических углеводородов С,— Гидрированием в одну или две ступени из фракций 360—500 С сернистой нефти получены различные типы депарафинированных моторных масел, успешно прошедших моторные испытания [c.82]

    Процессы гидродеароматизации направлены на удаление ароматических углеводородов из прямогонных фракций и легкого газойля каталитического крекинга путем перевода их в нафтены с целью получения компонентов реактивных топлив и растворителей. Для гидрирования ароматических углеводородов использовали никельвольфрамсульфидные катализаторы, обладающие низкой активностью. Для повышения гидрирующей способности к обычным катализаторам добавляли или Р(1, гидрирующие способности которых на один-два порядка выше сульфидов Мо и №. В присутствии электроноакцепторной матрицы-цеолита металлический катализатор защищается от отравления сернистым ядом. Возникновение дефицита электронной плотности на атомах металла, взаимодействующих с сильнокислотными протонными центрами носителя по донорно-акцеп-торному механизму, сдвигает равновесие сульфидирования влево. Электроноакцепторная защита эффективна для металлов групп и Рс1 при содержании серы в сырье до 0,5%. Избыточная расщепляющая активность катализатора, возникающая в результате введения Р1, может быть подавлена селективной щелочной обработкой катализатора. Электроноакцепторная защита металла реализована в катализаторах гидродеароматизации ГТ-15 и ГТ-15М. Эти катализаторы обеспечивают высокую степень гидрирования при содержании серы в сырье до 0,5%. Для продуктов с более высоким содержанием серы применяют катализаторы типа 269 и 269М в оксидной форме и НВС-30 в сульфидной форме системы Mo(W), Перечисленные катализаторы позволяют снизить давление процесса до 5 МПа без изменения степени гидрирования при удвоенной объемной скорости. [c.179]

    Процесс гидрокрекинга вакуумного дистиллята служит для получения реактивных и дазельных топлив, компонента высокоиндексных масел и сырья для каталитического крекинга. Из-за низкой октановой характеристики в процессе стараются получать как можно меньше бензина. Направление процесса, выход и качество образующихся продуктов во многом определяются качеством катализатора и исходного сьфья, условиями проведения процесса. Катализаторы гидрокрекинга являются полифункциональными системами и наряду с реакциями расщепления сырья должны обеспечить гидрогенолиз серо-, азот- и кислородсодержащих соединений и гидрирование полициклических, ароматических углеводородов. Для гидрокрекинга вакуумного дистиллята применяют катализаторы двух типов аморфные (оксикремнеземные или металлосиликатные) и цеолитсодержащие. Как правило, эти катализаторы содержат расщепляющий и гидрирующий компоненты. Их эффективность определяется как свойствами каждого компонента, так и вкладом в суммарную гидроконверсию [c.179]

    На современных установках каталитического крекинга катализатор последовательно проходит реактор, отпарную зону, регенератор и снова поступает в реактор. В течение этого цикла в зависимости от типа установки катализатор один или два раза транспортируется пневмоподъемником. Условия в указанных аппаратах разные. В реакторе катализатор при 450—500°С контактируется с углеводородами сырья и продуктов реакции, находящимися в парообразном или в парожидкостном состоянии. В отпарной зоне для удаления адсорбированных углеводородов катализатор обрабатывают перегретым водяным паром. В регенераторе при 450— 750 °С длительное время на него дейсгвует окислительная среда кислорода воздуха. Кроме того, на катализатор действуют меняющиеся механические нагрузки. В реакторе, регенераторе, отпарной секции и переточных трубах установок с движущимся плотным слоем он истирается и находится под давлением вышележащих слоев. В аппаратах установок с кипящим слоем и пневмоподъемнике с движущимся плотным слоем поверхность катализатора подвергается усиленной эрозии вследствие многократных столкновений с другими частицами и стенками аппаратов. [c.6]

    Стабильность к окислению бензиновых фракций дистиллятов каталитического крекинга, термических процессов переработки тяжелого нефтяного сырья и бензинов пиролиза углеводородных газов и низкиоктановых бензинов повышают путем насыщения водородом непредельных углеводородов, в частности диеновых (с сопряженными связями), и ненасыщенных боковых цепей ароматических углеводородов (типа стирола). Олефиновые углеводороды в большинстве случаев не влияют на окислительную стабильность крекинг-бензина при получении из указанных дистиллятов автомобильного бензина эти углеводороды, обладающие относительно высокими антидетонационными свойствами, желательно сохранять в продукте. [c.195]

    Особенностью современной промышленности моторных топлив является сниженное по сравнению с прошлым значение продуктов прямой гонки природной нефти и все возрастающая роль в производстве высококачественных товарных продуктов органического синтеза. Синтез углеводородов желаемых классов и типов структуры, лучше удовлетворяющих разнообразным требованиям двигателей, нежели пестрые смеси углеводородов природных нефтей, обеспечивается развитием глубоких форм переработки природной нефти каталитического крекинга, изомеризации, полимеризации газов крекинга, алкп-лирования, дегидрогенизации, дегидроциклизации и т. д., а также переработкой аналогичными способами ископаемых твердых каустобиолитов. [c.3]

    Тяжелые нефтяные остатки, в которых смолисто-асфальтеновая часть составляет 50% и больше, а в структуре углеводородов преобладают конденсированные полициклические системы с большим удельным весом ароматических колец, характеризуются низким содержанием водорода. Поэтому использование этой части нефти в качестве топлива сопряжено с необходимостью предварительного обогащения ее водородом. Этот процесс можно осуществить либо глубокой термической деструкцией типа полукоксования, либо прямым каталитическим гидрированием, сопряженным с крекингом тяжелого сырья. В первом случае часть углерода выводится из сырья в виде кокса или полукокса, содержание водорода в котором не превышает 2—3%. Освободившийся в процессе коксования водород перераспределяется среди газообразных и жидких продуктов пиролиза. Второй процесс включает две реакции каталитический крекинг и каталитическое гидрирование. Вводимый в реакцию свободный молекулярный водород непосредственно присоединяется к осколкам крекируемого сырья, насыщая их водородом. Для переработки тяжелых нефтяных остатков предлагаются разные варианты технологических процессов, в основе которых лежит один из названных выше приемов обогащения водородом или комбинация их обоих. Процесс прямого насыщения водородом сырья (метод каталитического крекинга) затрудняется быстрой дезактивацией катали- [c.247]


Смотреть страницы где упоминается термин Каталитического крекинга типы углеводородов: [c.135]    [c.109]    [c.163]    [c.155]    [c.280]    [c.339]    [c.144]   
Углеводороды нефти (1957) -- [ c.374 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитический крекинг Крекинг каталитический

Крекинг каталитический

Крекинг углеводородов



© 2025 chem21.info Реклама на сайте