Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды, конденсация с олефинами

    Реакции сульфирования и окисления-восстановления протекают в относительно меньшем масштабе, потому что большая часть отработанной кислоты может быть регенерирована. Однако нри очистке крекированных дистиллятов от серы на первый план выступает химическое воздействие кислоты при этом происходят реакции полимеризации, этерификации, конденсации ароматических углеводородов и олефинов, сульфирование и т. д. Азотистые основания при этом нейтрализуются, а нафтеновые кислоты растворяются в серной кислоте. Поэтому состав осадка очень сложный и в значительной степени зависит от природы очищаемого дистиллята, крепости кислоты и температуры очистки. [c.570]


    Все описанные выше технологические схемы производства присадок основываются, на использовании установок периодического действия, которые, как уже говорилось, не могут быть в достаточной степени автоматизированы и механизированы, В последние годы наряду с синтезом новых, высокоэффективных присадок к маслам ведутся большие работы по усовершенствованию действующих процессов производства присадок. В частности, разрабатываются непрерывные схемы, являющиеся более эффективными и экономически выгодными. Особое внимание уделяется разработке непрерывных схем для тех стадий или узлов производства, которые являются общими для процессов получения многих присадок например, алкилирование ароматических углеводородов и их производных олефинами, конденсация алкилфенолов с формальдегидом и другими соединениями, нейтрализация и сушка различных продуктов и отделение механических примесей, сульфирование масел серным ангидридом, отгонка растворителей и непрореагировавших продуктов, а также утилизация отходов производства присадок. [c.248]

    Конденсация ароматических углеводородов с олефинами, температура 180— 300° бензол и пропилен превращаются в изопропилбензол [c.427]

    В дополнение к вышеуказанному можно также заметить, что по некоторым данным имеют место реакции конденсации между ароматическими углеводородами и олефинами, а также между двумя ароматическими молекулами. Так, например, опыты с бутеном и циклогексеном дали много ароматических продуктов, кипящих в пределах 160—190°, что соответствует ароматическим углеводородам состава j, и С - Кроме того, каталитический крекинг всех алкилбензолов выше толуола дает продукты с сильно повышенными показателями преломления, что указывает на образование конденсированных ароматических углеводородов [2]. [c.132]

    Конденсация ароматических углеводородов происходит между молекулами ароматических углеводородов либо ароматических углеводородов и олефинов (или других непредельных углеводородов). В результате реакции образуются полициклические ароматические углеводороды, которые могут конденсироваться дальше, до асфальтовых соединений и кокса. [c.112]

    Технологические Смолы Полимеризация олефинов, конденсация ароматических углеводородов, окислительные процессы Наличие в нефти реакционноспособных веществ [c.22]

    Бензин содержит порядка 94% олефиновых, 5 /о парафиновых и циклопарафиновых и 1 % ароматических и диеновых углеводородов. При этом парафины, циклопарафины и диены концентрируются во фракции, выкипающей до 60 °С, а ароматические углеводороды — в хвостовых фракциях бензина. В сырье нежелательно присутствие бутадиена, дающего смолообразные продукты конденсации на катализаторе. Растворенный в сырье кислород также интенсифицирует смолообразование. Если в сырье имеется сероводород, то полимер-бензин содержит сернистые соединения (меркаптаны). Любые примеси основного характера в сырье, которые могут в нем содержаться в результате очистки от сероводорода, дезактивируют катализатор, снижая его кислотность. Для поддержания равновесной концентрации фосфорной кислоты сырье должно содержать (3,5—4) 10 % воды. Такая влажность сырья равна растворимости воды в жидких олефинах Сз—С4 при 20—25 °С и может быть легко достигнута при контакте сырья с водой. [c.198]


    Непредельные углеводороды, образующиеся при крекинге, могут претерпевать различные термические превращения, направление которых зависит от температуры. При температуре примерно до 500°С и высоком давлении происходит полимеризация олефинов. При более высоких температурах и низком давлении возможно их разложение и частичная конденсация в ароматические углеводороды. [c.63]

    Коксообразование в процессах гидрокрекинга и многих других гидрогенизационных процессах, как известно, происходит в результате конденсации олефинов с ароматическими углеводородами [7, 8]. Подбором температуры и особенно рабочих давлений водорода можно существенно снизить или полностью предотвратить коксообразование и стабилизировать активность и селективность действия катализаторов гидрогенизационных процессов. Благоприятные условия проведения процесса должны быть выбраны на основе химико-термодинамических анализов. [c.11]

    При нагревании углеводородного сырья до высоких температур в отсутствие окислителей оно подвергается термическому разложению. При этом происходит разрыв связей С—С и С—Н, а также полимеризация и конденсация. Конечными продуктами термического разложения могут быть углерод, водород, низшие парафины, олефины и диены, а также продукты конденсации и полимеризации низших углеводородов — полициклические ароматические углеводороды и смолы. [c.130]

    Олефинам свойственны весьма разнообразные реакции термического превращения, направление которых зависит от температуры и давления. Умеренные температуры (примерно до 500° С) и высокие давления способствуют протеканию реакций полимеризации олефинов напротив, высокие температуры и низкие давления вызывают реакции распада. Так, из простейшего олефинового углеводорода — этилена под давлением 150 ат уже при температуре 370° С образовалось 92% жидких полимеров и 8% бутилена при 625° С и атмосферном давлении выход жидких компонентов снизился до 32,9%, остальное составляли газообразные продукты. При повышении температуры до 800—900° С этилен не полимеризуется — идут реакции распада и частично конденсации в ароматические углеводороды. Такое поведение характерно и для жидких олефинов. [c.29]

    В условиях обычного термического крекинга, особенно под давлением, диолефины являются весьма неустойчивыми соединениями и быстро подвергаются дальнейшим превращениям. При высокой концентрации олефинов вновь образовавшиеся диолефины вступают, очевидно, в различные реакции конденсации с олефинами с образованием циклоолефинов и дальнейшим превращением последних в нафтеновые или ароматические углеводороды. [c.125]

    Известно, что в прису-тствии безводного хлористого алюминия олефины весьма легко конденсируются с ароматическими углеводородами (166). Термодинамически также вполне возможны различные реакции коиденсации олефинов с ароматикой. Можно было бы предполагать, что в условиях обычного гомогенного крекинга, особенно при повышенном давлении, олефины будут легко вступать в реакции конденсации с ароматическими углеводородами. [c.220]

    Результаты описанного опыта дают возможность предполагать, что в условиях обычного промышленного гомогенного крекинга под давлением реакции конденсации олефинов с ароматическими углеводородами не играют заметной роли. [c.220]

    Практически образование олефинов становится заметным при температурах выше 600° (гл. 12). Ароматические углеводороды образуются в той же области температур, т. е. при 600° и выше. По-видимому, они получаются главным образом в результате конденсации олефинов с диолефинами. Их образование можно подавить, если проводить процесс при температуре ниже 600° или при малой продолжительности реакции, что должно помешать развитию вторичных реакций. Условия образования ароматических углеводородов при синтезе их из более простых молекул или при распаде более сложных молекул обсуждаются в гл. 14 (стр. 253). [c.107]

    Обычно одним из лучших критериев интенсивности побочных реакций является отношение выходов бензина и кокса. Высокое отношение указывает на преобладание желательных реакций. Низкое отношение выходов бензина и кокса указывает на интенсивное протекание нежелательных побочных реакций. К желательным реакциям относятся изомеризация, гидрирование, циклизация и ароматизация (неглубокая) олефинов эти реакции ведут к высокому выходу парафиновых углеводородов изостроения и ароматических углеводородов, выкипающих в пределах температур кипения бензина, и высокому отношению изо- и нормальных парафиновых углеводородов. Нежелательные реакции (крекинг, дегидрогенизация и полимеризация олефинов, алкилирование и конденсация арома- [c.94]

    Опыт исследовательских работ последних лет показывает, что, несмотря на упомянутые многочисленные затруднения, при дифференцированном подходе к отдельным стадиям синтеза присадок можно создать узлы непрерывного действия. Непрерывное ведение процесса особенно рационально в тех случаях, когда реакции протекают с большой скоростью. В настоящее время в опытном и опытно-промышленном масштабах уже созданы реакторы, обеспечивающие непрерывное ведение некоторых стадий синтеза присадок алкилирования фенола олефинами на твердых катализаторах, сульфирования ароматических углеводородов, конденсации алкилфенола с формальдегидом, нейтрализации и сушки промежуточных продуктов синтеза, фосфоросернения и др. [c.222]


    Для данного процесса предлагается использовать (с соответствующим дооборудованием) традиционные установки каталитической конденсации (полимериза1Ц1и) или синтеза МТБЭ. Продукт установки ИнАлк — высокооктановый парафинистый компонент бензина с ИОЧ 99 и МОЧ 94, не содержащий ароматических углеводородов. (Содержание олефинов в продукте может регулироваться.) [c.924]

    Позже установили, что продукты алкилирования многоядерных ароматических углеводородов высшими олефинами, полученными из продуктов крекинга парафинов или продуктов дегидратации высокомолекулярных спиртов, являются более подходящ ими. В качестве конденсированных ароматических углеводородов применяли, в частности, нафталин и антрацен, а также карбазол. Количество ароматического компонента реакции должно быть больше 20% вес., а олефинов меньше 70% вес. В большинстве случаев оно составляет 50% вес. При более высоком содержании ароматических компонентов остается большая часть пепрореагировавших соединений, которые после превраш,ения отгоняют. Расход хлористого алюминия относительно велик и составляет 20—60% вес., чаш е 40% вес. от количества олефинов. При большем количестве безводного хлористого алюминия получаются продукты с худшими флуоресцирующими свойствами. Продукты конденсации имеют молекулярный вес 600—800 и представляют вязкие масла, легко растворяющиеся в углеводородах. Они также хорошо воспринимаются смазочными маслами и при добавке 0,1—0,2% вес. сообщают последним зеленую флуоресценцию, так что в этом отношении они аналогичны наилучшим пенсильванским смазочным маслам. [c.633]

    Таким образом ароматизацию, важный фактор повышения октанового числа бензинов каталитического крекинга, можно охарактеризовать, как вторичную реакцию, идущую через стадию полимеризации или конденсации олефинов, получаемых при крекинге различных исходных соединений. Простые циклоолефины С5 и Се, циклонентен и циклогексен 16] образуют значительное количество ароматических углеводородов, но с относнтельио высокой температурой кипения, что может быть результатом быстрой полимеризации или конденсации таких олефинов, с последующей изомеризацией кольца, переносом водорода и крекингом. [c.135]

    Карбоний ионный механизм. Под влиянием серной кислоты олефины подвергаются различным реакциям гидратации, образованию сложных эфиров, нолиморизации и конденсации с ароматическими углеводородами. Наиболее просто механизм различных реакций можно понять с точки зрения нродстаплений об образовании в качестве промежуточного продукта карбопнй-иопа [1381. Так, нанример, в разбавленных растворах кислот третичные олофины подвергаются гидратации в третичные спирты [78, 196, 204, 205 . С бо. гое концентрированными кислотами образуется сложный эфир сорной кислоты [170]. В разбавленных водных растворах кислот вода является главным нуклеофильным агентом, в то время как в 67%-ной серной кислоте концентрация свободной воды ничтожно мала и бисульфат-ион присутствует в очень большой концентрации (ЬХХУП)  [c.435]

    Диолефины термически более стабхгльны, чем олефины. Бутадиен-1,3 поянляется в нродуктах ппролиза при 600 °С и обнаруживается в них вплоть до 900 °С. Для него характерна при пиролизе конденсация с этиленовыми и ароматическими углеводородами, приводящая к образованию моно- и нолиароматических углеводородов. [c.417]

    При олигомеризации олефинов протекают и некоторые побочные реакции, особенно при повышении температуры образуются парафины, нафтены, ароматические углеводороды, смолистые продукты конденсации. За счет расщепления промежуточных ионов карбония и последующей соолигомернзации получаются олефины с числом углеродных атомов, не кратным исходному олефину. Во избея<ание перечисленных побочных реакций следует проводить пoли .epизaцию олефина при возможно низкой температуре, при которой, тем не менее, достигается достаточная скорость основного процесса. [c.57]

    Наиболее благоприятным сырьем для получения олефинов являются парафины, при термическом расщеплении которых-в тге-зультате дегидрирования и распада цепи получаются газообразные и жидкие парафины с меньшей молекулярной массой и олефины. При пиролизе пяти- и шестичленных циклоалканов наряду с водородом и олефинами образуются диолефины, в частности бутадиен. Присутствие последнего в продуктах пиролиза играет решающую роль в получении ароматических углеводородов. Согласно одной из гипотез, ароматические углеводороды образуются в результате вторичной реакции конденсации бутадиена с этиленом и его гомологами  [c.181]

    Известно, что в присутствии безводного хлористого алюминия ароматические углеводороды весьма легко вступают в реакцию конденсации, даже нри температуре 0° С (166). Термодинамические расчеты также показывают (126и), что равновесие реакций конденсации олефинов с ароматикой практически целиком сдвинуто в сторону образования продуктов кондепсации. Приводим в качестве примера (127) вычисленные величины константы равновесия некоторых подобных реакций (табл. 173). [c.208]

    Для остальных групп углеводородов химизм образования карбоидов может быть описан только в самых общих чертах. Наиболее характерной и общей чертой процессов коксообразования является то, что они неизбежно проходят через стадию конденсации или полимеризации циклических углеводородов (ароматических или циклических непредельных). Поэтому при крекинге других классов углеводородов (парафины, олефины, нафтены и т. д.) предварительно должны образоваться циклические углеводороды, после чего начинаются процессы коксообразования. В частности при крекинге под давлением алкилированных ароматических углеводородов большое значение имеет, повидимому, промежуточное образование циклических непредельных углеводородов (типа стирола, винилнафталина и т. д.), полимеризация и конденсация которых приводят к образованию карбои- [c.211]

    Ароматические углеводороды при взаимодействии с- олефинами (особенно разветвленными и циклическими) более интенсивно подвергаются конденсации в результате Н-переноса между оле-фином и боковой цепью ароматического углеводорода, например 19]  [c.97]

    Кроме того, при превращениях ароматических углеводородов существенную роль играют реакции конденсации. К этим реакциям наиболее склонны полициклические ароматические углеводороды, в результате чего повышается количество кокса, отлагающегося на катализаторе. Каталитический крекинг смеси углеводородов идет последовательно. При одинаковом примерно числе углеродных атомов в молекуле углеводороды различных рядов по последовательности их превращений на алюмосиликатных катализаторах располагаются в следующем порядке 1) конденсированные ароматические углеводороды, 2) нафтено-ароматические углеводороды и полициклические нафтены, 3) алкилирован-ные бензолы и нафталины, 4) парафины. Влияние ароматических углеводородов с конденсированными циклами на каталитический крекинг парафинов, нафтенов и олефинов изучали Д. И. Сос-кинд и С. И. Обрядчиков [88]. Ими установлено, что конденсированные ароматические углеводороды больше всего тормозят крекинг парафинов меньше —нафтенов и еще меньше олефинов. Так как в дистиллятных фракциях масел преобладают нафтено-ароматические углеводороды, то при низкотемпературном крекинге этих фракций мы вправе ожидать преимущественный крекинг этих углеводородов, сопровождающийся расщеплением нафтеновых колец, частичной их дегидрогенизацией с образованием малокольчатых ароматических углеводородов, имеющих достаточно длинные алкильные цепи. [c.250]

    Вещества, адсорбируемые поверхностью пористото адсорбента, подвергаются в ряде случаев химическим изменениям. Так, ди-олефины и олефины способны полимеризоваться с образованием димеров, трим-еров и т. д. Смолистые вещества и некоторые ароматические углеводороды, адсорбируясь на поверхности адсорбента, также изменяются, подвергаясь конденсации или окислению кислородом, окклюдированным в порах адсорбента. [c.68]

    Кроме описанных выше реакций конденсации, при крекинге происходит также полимеризация олефинов, образовавшихся в результате первичных реакций. При полпмеризацип получаются продукты, часть которых кипит в температурном интервале бензиновой фракции, а часть принадлежит к высококипящим нафтено-ароматическим углеводородам. [c.233]

    Ниже в качестве примера описана конденсация олефина с ароматическим углеводородом, в результате которой образуется присадка, улуч1пашщая флуоресценцию [291. [c.633]

    Другим источником ароматических углеводородов могли быть реакции диспропорционирования водорода, а также реакции полимеризации олефинов и, наконец, прямое замыкание цепи метановых углеводородов. Последняя реакция протекает, как известно, минуя стадии полиметиленовых углеводородов, термокаталитическое же превращение этих последних в ароматические углеводороды протекает в такой слабой степени, что едва ли возможно видеть значительный источник ароматических углеводородов в реакциях дегидрогенизации. Этот вопрос еще не может считаться решенным окончательно. Вторичным источником высших ароматических углеводородов являются различные типы конденсации простейших представителей в высшие. Эта реакция обычна в случае термокатализа различных нефтяных фракций. Например из керосина, при температуре 300° был получен с алюмйсилика-том антрацен. Все эти вторичные ресурсы ароматических углеводородов, но-видимому, не являются такими крупными, как происхождение из исходного материала нефти. [c.125]

    Ароматические углеводороды при всех обстоятельствах, за исключением очень высоких температур, не способны к распаду, зато в них ясно выражена способность к конденсации в нолициклические соединения более высокого класса. Типичными реакциями превращения ароматических углеводородов является дис-пропорционирование радикалов и отщепление их в том случае, когда их длина не соответствует прочности связи с ядром. Обычно радикалы длиннее амила уже не удерживаются ядром и отщепляются в виде олефинов, которые превращаются затем в метановые углеводороды вследствие диспропорционирования водорода. Можно думать, что чем выше число циклов в ароматическом углеводороде, тем менее прочна связь с радикалами. Поэтому высшие ароматические углеводороды нефти, как правило, не содергкат длинных цепей в виде радикалов и во всех случаях предпочтительнее распределение метановых углеродов в виде нескольких коротких цепей. [c.217]


Смотреть страницы где упоминается термин Ароматические углеводороды, конденсация с олефинами: [c.609]    [c.134]    [c.4]    [c.421]    [c.428]    [c.166]    [c.170]    [c.52]    [c.67]    [c.182]    [c.633]    [c.40]    [c.34]   
Нитрование углеводородов и других органических соединений (1956) -- [ c.447 ]

Нитрование углеводородов и других органических соединений (1956) -- [ c.447 ]




ПОИСК





Смотрите так же термины и статьи:

Арсенаты как катализаторы при конденсация олефинов с ароматическими углеводородами

Каталитическая конденсация олефинов с ароматическими углеводородами (таблица

Продукты конденсации ароматических углеводородов с хлорированными парафинами или олефинами

Смазочные продукты, образование при конденсации олефинов я ароматических углеводородов



© 2025 chem21.info Реклама на сайте