Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железные протекторы

    Защита металлов электрохимическим путем. Этот метод иначе называется протекторной защитой или электрозащитой. Для этого используют специальный анод — протектор, который готовится из металла или сплава, имеющего более отрицательный электродный потенциал, чем потенциал защищаемого металла. Протектор присоединяется к защищаемому металлу и, контактируя, они оказывают взаимное поляризующее действие. Протектор будет разрущаться от коррозии, предохраняя соответствующий защищаемый металл. В качестве протекторов чаще всего используют цинк, старые железные детали, магниевые сплавы и т. д. Обычно протекторная защита достигает своей цели в тех средах, которые хорошо проводят электрический ток. [c.239]


    Сущность защиты металла от коррозии протекторами заключается в том, что в агрессивном электролите создается гальваническая пара из металла конструкции и соединенного с ним другого металла (протектора). Металл протектора должен быть более активным (стоять левее в ряду напряжений), чем основной металл. В этом случае протектор играет роль анода и будет разрушаться агрессивной средой, а основной металл окажется катодом и разрушаться не будет. Для защиты бронзы, латуни и меди применяют протекторы из цинка, кадмия и железа. Для защиты труб конденсатора, выполненных из бронзы, латуни и меди, следует отдать предпочтение железным протекторам, продукты распада которых, заносимые водой в трубы, способствуют образованию стойкой защитной пленки окислов по всей длине трубы. Для стальных конструкций обычно применяют в качестве протектора цинк. [c.517]

    Один из наиболее распространенных методов защиты от коррозии состоит в катодной поляризации металла. Из рис. 92 видно, что при отклонении потенциала металла в отрицательную сторону от скорость анодного растворения металла уменьшается, а скорость выделения водорода увеличивается, т. е. катодная поляризация уменьшает скорость коррозии. Катодную поляризацию можно создать от внешнего источника тока. Этот метод называют методом катодной защиты. Можно также соединить основной металл с другим металлом (протектором), который в ряду напряжений расположен левее. Часто для протекторной защиты используют магний или алюминий, при помощи которых защищают рельсы, мачты и другие конструкции. Протектор постепенно растворяется и его надо периодически заменять. Примером протекторной защиты служит также цинкование железных изделий. Железо является катодом локального элемента, а цинк—анодом. Следовательно, локальные токи вызывают коррозию покрытия, тогда как железо оказывается защищенным от коррозии. [c.214]

    Цинк используется для защиты стали от атмосферной коррозии. Применяется для получения медных, никелевых, магниевых сплавов, в производстве аккумуляторов и как протектор при электрохимической защите железных сплавов. [c.218]

    Протекторы из литейного чугуна применялись еще в 1824 г. для защиты медной обшивки деревянных судов (см. раздел 1.3). И в настоящее время железные протекторы еще применяют на объектах со сравнительно положительным защитным потенциалом, в особенности если слишком сильное снижение потенциала, например при использовании цинка, нежелательно. В таких случаях обычно применяют протекторы из чистого железа, например армко-железа. Важнейшие их показатели приведены в табл. 7.1. [c.179]


    Цинковые пластины не вполне пригодны для защиты конденсаторных трубок из латуни вследствие того, что они быстро теряют свою активность. Лучще ведут себя железные аноды. Продукты коррозии железа оказывают, по-видимому, также благоприятное влияние. Чугунные водяные камеры страдают от коррозии, выражающейся в виде графитации. Их можно защищать коваными железными протекторами, [c.271]

    Переполяризация здесь не рекомендуется, так как этим можно повредить естественные защитные слои внутри трубок. Железные протекторы должны часто обновляться [80]. Для чугунных конденсаторных головок также применяют протекторы из литой стали во избежание графитации чугуна. [c.814]

    Для защиты бронзы, латуни и меди применяют протекторы из цинка, кадмия и железа. Для защиты трубок следует отдать предпочтение железным протекторам, продукты распада которых, заносимые водой в трубки, способствуют образованию стойкой [c.524]

    Для защиты бронзы, латуни и меди применяют протекторы из цинка, кадмия и железа. Для защиты труб конденсатора, выполненных из бронзы, латуни и меди, следует отдать предпочтение железным протекторам, продукты распада которых, заносимые водой в трубы, способствуют образованию стойкой защитной пленки окислов по всей длине трубы. Для стальных конструкций обычно применяют в качестве протектора цинк. [c.580]

    Широко применяют литейные магниевые сплавы (главным образом, типа МЛ—4) в качестве протекторов для защиты железных конструкций в почвенных и морских условиях. Высокий отрицательный потенциал магния сообщает протекторам из магниевых сплавов наибольшую электрохимическую эффективность по сравнению с протекторами из сплавов на основе цинка или алюминия, а небольшой эквивалентный вес магния делает протекторы из магние- [c.274]

    Протекторная защита железных гвоздей, закрепляющих медные листы обшивки кораблей, в морской воде при помощи цинковых или железных протекторов был впервые предложена Деви в 1824 г. В том же году А. И. Шерер показал электрохимический механизм быстрой коррозии этих гвоздей. [c.344]

    Например, при частичном нарушении цинкового покрытия на железном изделии возникает гальваническая пара, где катодом служит железо (ф°ре +/ре = —0,44 в), анодом цинк (ф°2п +/гп = —0,76 в). В растворе электролита цинк окисляется, а на железе происходит восстановление, и само оно не разрушается. Таким образом, анодное покрытие в случае его нарушения продолжает играть защитную роль по отношению к основному металлу, являясь протектором. Катодное же покрытие, например слой олова (ф°зп +/5п = —0,14 в) на железе (ф°Ре +/Ре = —0,44 в), выполняет защитную функцию до тех пор, пока целостность его не нарушена. Будучи нарушенным, катодное покрытие ускоряет коррозию железа. [c.229]

    Катодная защита поляризацией до потенциала ниже критического потенциала питтингообразования. Для этого можно применять приложенный извне ток, а также в хорошо проводящих средах (например, морской воде) — защиту цинковыми, железными или алюминиевыми протекторами [44]. Аустенитные нержавеющие стали, применяемые для сварки малоуглеродистой листовой стали, а также гребные винты из стали 18-8, установленные на судах из черной стали, не подвергаются питтингу. [c.315]

    В промышленности часто применяют так называемую протекторную защиту, пригодную в тех случаях, когда защищаемая конструкция (корпус судна, подземный трубопровод) находится в среде электролита (морская, почвенная вода). Для осуществления протекторной защиты используют специальный анод — протектор (например, старые железные детали, алюминиевые сплавы и т. д.) с более отрицательным потенциалом, чем потенциал металла защищаемой конструкции. [c.365]

    У сплавов, стойкость которых обусловлена преимущественно образованием защитных слоев (алюминиевая латунь, медноникелевые сплавы) катодная защита в морской воде залечивает повреждения, вызванные эрозией под действием песка или образовавшиеся при закатке конденсаторных трубок. Цинковым и магниевым протекторам в этих случаях предпочитают железные, так как образующиеся продукты коррозии железа благоприятствуют залечиванию естественных защитных слоев [20]. [c.799]

    С целью снижения интенсивности влияния переменного тока на стальные трубопроводы следует трассу вновь строящихся трубопроводов относить на расстояние более 500 м от полосы отвода железной дороги, электрифицированной на переменном токе прокладывать трубопроводы в коллекторах и каналах заземлять опасные участки трубопроводов с помощью специальных контуров заземлений или протекторов. [c.54]

    Для предохранения конденсаторных латунных труб от разрушения применяется также протекторная защита. Цинковые протекторы быстро теряют свою активность и поэтому непригодны, Хорошо работают железные аноды, причем продукты коррозии железа тоже оказывают благоприятное влияние. [c.119]

    Распространена также протекторная защита аппаратуры, работающей в рассолах [20]. Для защиты бронзы, латуни и меди применяют протекторы из цинка, кадмия и железа, а для железных конструкций — цинковые. [c.237]

    Важное значение для развития теории коррозии имели работы Холла (1819) и Деви (1824), показавшие, что в отсутствии воздуха железо и медь не корродируют. Русским изобретателем Власовым было предложено в 1824 г. обрабатывать железные гвозди в кипящем масле для устранения коррозии медной обшивки кораблей. Это предложение оказалось более эффективным для того времени, чем предложение Деви об электрохимической защите медной обшивки цинковым протектором, так как в последнем случае на меди начиналось усиленное обрастание. [c.9]


    Активная электрическая защита газопровода от воздействия блуждающих токов разделяется на катодную защиту — нейтрализацию блуждающих токов подачей внешнего тока протекторную защиту — нейтрализацию блуждающих токов путем направления их на протектор, т. е. металл, разрушаемый вместо газопровода дренажную защиту — отвод блуждающих токов (прямой дренаж, поляризованный дренаж, усиленный дренаж), применяемый преимущественно при наличии блуждающих токов от путей трамваев и железной дороги. Дополнительно к устройствам электрической защиты применяют электроизолирующие фланцы, разделяющие газопровод на участки, а также устройства заземления. [c.44]

    Коррозионностойкие стали и другие пассивные сплавы (например, медноникелевые) можно защитить от точечной коррозии катодной поляризацией их от внешнего источника постоянного тока или с помощью цинковых, алюминиевых или железных протекторов. Катодная поляризация должна обеспечить такой потенциал поверхности защищаемого металла или сплава, величина которого будет ниже потенциала питтингообразо-вания. [c.444]

    Напишите уравнения реакций, которые будут протекать при защите железной конструкции протектором из м 1гиия в нейтральной среде. [c.221]

    Стальные трубопроводы, прокладываемые непосредственно в земле, подлежат защите от коррозии, вызываемой влиянием электрифицированного транспорта на переменном токе в опасных зонах независимо от коррозионной активности грунтов. Защиту стальных трубопроводов от коррозии, вызываемой влиянием электрифицированного транспорта на переменном токе, осуществляют путе.м катодной поляризации или путем снижения интенсивности влияния переменного тока. С целью снижения интенсивности влияния переменного тока на стальные трубопроводы следует для вновь строящихся трубопроводов относить трассу трубопровода на расстояние свыше 500 м от полосы отвода железной дороги, электрифицированной на переменном токе прокладывать трубопроводы в коллекторах и каналах заземлять опасные участки трубопроводов с помощью специальных контуров заземлений или протекторов. [c.97]

    Для наглядности используют в качестве коррозионной среды серную кислоту. При этом в случае протектора (кадмиевой насадки) видно, что пузырьки водорода выделяются на кадмии, а железная проволочка остается чистой и блестящей. Проволочка без протектора минут через 20 заметно чернеет. [c.326]

    Открытие явления электрохимической защиты относят к 1824 г., когда было предложено использовать для борьбы с коррозией медной общивки морских судов цинковые и железные протекторы. Однако развития этот метод защиты тогда не получил, поскольку, наряду с прекращением коррозионного разрушения металлической обшивки корпуса судна, началось его обрастание, терялась скорость хода корабля. Интерес к электрохимическому методу защиты от коррозии возник в начале XX столетия, когда особенно большое значение приобрели вопросы защиты подземных металлических сооружений. Кроме того, как оказалось, бозможности использования катодной поляризации для защиты корпусов морских судов не были выяснены до конца, что особенно наглядно показали последние достижения в этой области. [c.5]

    Известно, что в гальванической паре разрушению от электрохимической коррозии подвергается анод. Этим обстоятельством иногда пользуются для защиты аппаратуры от коррозии. Если, например, в железный аппарат, где есть электролит, поместить цинковую пластинку, то именно она, не железная стенка аппарата, станет анодом и будет разрушаться, а железо аппарата будет со-лраняться. Если же взамен цинковой пластнши поместить никелевую, свинцовую или медную пластинку, то анодом окажется уже железо аппарата и его коррозия значительно усилится. Следовательно, подбирая гальваническую пару так, чтобы стенка аппарата была катодом, а не анодом, можно уменьшить ее электрохимическую коррозию. Такой способ защиты от коррозии называется протекторной защитой. Протекторы йзготовляют из цинка, алюминия, магния и сплавов, анодных по отношению к стали. Протекторная защита проста в эксплуатации и не требует постоянного обслуживания. [c.175]

    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых оксидных или солевых пленок, возникающих при растворении металлов. Образование оксидных пленок — причина устойчивости многих металлов, например алюминия. Из рис. IX. 6 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют также, напыляя более благородный металл на защищаемый, используя благородные металлы в качестве легирующих добавок или протекторов. В результате основной металл поляризуется анодно и переходит в пассивное состояние. Переход в пассивное состояние может вызвать присутствие в растворе окислителей, например кислорода и др. (рис. IX. 6). Так, пассивацию железа вызывают концентрированные HNOa и H2SO4, что позволяет использовать железную тару для перевозки серной и азотной кислот. Образование оксидных слоев сильно влияет не только на анодное растворение металлов, но приводит к ингибрированию и многих других электродных процессов. Поэтому изучение механизма пассивации, процессов образования, роста и свойств оксидных слоев на металлических электродах — важная задача современной электрохимии. [c.258]

    Существует очень много способов борьбы против коррозии. Широко используются электрохимические методы защиты стальных конструкций на морских нефтяных промыслах, например на знаменитых Нефтяных Камнях в Каспийском море. При этом используют так называемые протекторы, представляющие собой слитки сплава Mg и А1, т. е. металлов, еще более химически активных, чем железо. Протекторы навешивают на погруженные в морскую воду части стальных эстакад. В результате устансиления разности потенциалов между электродами — железным (эстакада) к магний-алюминиевым (протектор) — Mg и А растворяются, а на железном электроде выделяется молекулярный водород (ион Н+ из воды разряжается на более электропо-ложительггом металле). Например, для магния  [c.118]

    Крепления протекторов обычно выполняют из конструкционной стали, например из материала № 1.0121 по DIN 17100. Для специальных целей, например на военно-морских судах, применяют также крепления протекторов из немагнитных сталей (материал № 1.5671 по DIN 17440) или из бронзы. Проволочные протекторы из цинка нередко имеют сердечник из алюминия. Для пластинчатых протекторов обычно применяют плоские крепления из чугуна щириной 20—40 и толщиной 3—6 мм. Стержневые протекторы для грунта или для внутренней защиты обычно отливают с сердечником в виде круглого железного прутка диаметром 8—15 мм. Для более крупных протекторов, например применяемых для защиты строительных конструкций в прибрежном щельфе, предусматривают более тяжелые крепления. Здесь применяют трубы соответствующего диаметра в качестве заливаемого элемента и сортовой стальной прокат в качестве крепления. [c.190]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]

    Для защиты аппаратуры, работающей в рассолах, применяется также протекторная защита [1]. Для защиты бронзы, латуни и меди применяют протекторы из цинка и кадмия, а для железных конструкций — цинковые. Защита протекторами дает хорошие результаты в рассольных испарителях [36]. Конструктивно протекторы представляют собой цинковые пластины размером 300x400x15 мм. Вместо пластин можно использовать тонкие цинковые листы, собранные в пакет по 7—8 штук. Протектор с помощью болтов и проволоки плотно прикрепляют к баку испарителя. Цинковые пластины меняют 3—4 раза в год. [c.334]

    Электрохимические методы защиты (протекторная защита, электрозащита). В промышо1енности часто применяют так называемую протекторную защиту (рис. 104), пригодную в тех случаях, когда защищаемая конструкция (корпус судна, подземный трубопровод) находится в среде электролита (морская, почвенная вода). Для осуществления протекторной защиты используют специальный анод — протектор (например, старые железные детали, магниевые сплавы и т. д.) с более отрицательным потенциалом, чем потенциал металла защищаемой конструкции. Если соединить проводни- [c.302]

    Радиус действия цинкового протектора при зашите железных поверхностей в растворах Na l разной концентрации и в морской воде [c.83]

    Катодная поляризация виешним током, применение протекторов (заи1,ита железных и стальных конструкций в нейтральных жидких коррозионных средах и почвах) [c.13]

    Прекращение или замедление окисления металла Мец вызывается сдвигом потенциала в отрицательную сторону. Тдкой прием используется в технике для борьбы с коррозией. К изделию, которое должно быть защищено от окисления, прикрепляется брусок более электроотрицательного металла (протектор), например к железному изделию — брусок цинка. Цинк ускоренно окисляется, защищая изделие. Когда брусок цинка будет израсходован, его заменяют новым. Применение протектора может быть эффективным лишь в том случае, если раствор обладает достаточно высокой электропроводностью, позволяющей установиться более отрицательному потенциалу защищаемого металла, чем равновесный потенциал его в данном растворе. [c.578]

    Протекторная зашита стальных и железных конструкций широко используется в морской воде или растворах солей в зоде и мало пригодна в речной воде. Протекторами для железа и стали являются цинк, алюминий и магний, а также сплавы на основе этих металлов, например сплав магния с 6% А1 и 3% 2п, сплак алюминия с 5% 2п и сплав цинка с 5% А1. Из указанных протекторов наиболее эффективным является магниевый сплав, потенциал которого в морской воде мало изменяется и равен—1,2 в. Худшие результаты дают алюминий и его сплавы, так как при этом возникает более высокий потенциал (—0,67 в), который в дальнейшем еше повышается вследствие поляризации через некоторое время такой протектор может вообще прекратить свое действие. Цинк и цинковые сплавы занимают промежуточное положение. На цинковом сплаве в морской воде устанавливается потенциал, равный — 0,78 в, который с течением времени облагораживается и приближается к потенциалу железа, но не так близко, как алюминий. [c.62]

    Опыт У.18. Расплавить гранулу кадмия в пробирке и опустить в расплав кончик предварительно зачищенной шкуркой железной проволочки или гвоздь, привязанный за нитку. Проволочку вытянуть и охладить на ней образуется насадка кадмия. Затем наблюдать коррозию железа с протектором и без протектора в серной кислоте, для чего погрузить проволочку с кадмиевой насадкой и другую проволочку без насадки (также предварительно зачищенную) в 10%-ный раствор Нг504. [c.326]


Смотреть страницы где упоминается термин Железные протекторы: [c.25]    [c.215]    [c.257]    [c.119]    [c.264]    [c.58]    [c.360]    [c.118]    [c.525]   
Катодная защита от коррозии (1984) -- [ c.179 , c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Протекторы



© 2025 chem21.info Реклама на сайте