Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделения, скорость

    Для второго из выбранных объектов, т. е. для железа, стандартный электродный потенциал равен —0,44 В. Поэтому здесь, так же как и в случае цинка, следует считаться с реакцией выделения водорода, и, следовательно, условия стационарности будут заданы уравнением (24.2). Однако в отличие от цинка здесь совершенно иное соотношение токов обмена металла и водорода. Ток обмена железа имеет порядок 10 з А-см- , а для водорода на железном электроде в кислых растворах он достигает А-см 2. Можно ожидать поэтому, что стационарный потенциал железа в условиях кислотной коррозии должен заметно отличаться от его обратимого потенциала он будет смещен в сторону положительных значений, г. е. в направлении равновесного потенциала водородного электрода. Этот вывод согласуется с экспериментальными данными и находит дополнительное подтверждение в том, что железо ведет себя в некоторых интервалах pH подобно водородному электроду. Скорость коррозии железа также можно вычислить, если только известны его стационарный потенциал и перенапряжение водорода на нем. [c.493]


    Известные предположения о наиболее вероятном механизме выделения водорода на разных металлах можно высказать на основании общих положений электрохимической кинетики в применении к данной электродной реакции. Так, было предположено, что при увеличении теплоты адсорбции водородных атомов на катодном металле вероятность замедленного разряда падает, а замедленной рекомбинации растет. Это связано с различным влиянием изменения теплоты адсорбции водородных атомов на скорость разряда и на скорость рекомбинации. Как следует из потенциальных кривых (рис. 19.5), энергия активации разряда уменьшается с ростом теплоты адсорбции. Энергия активации процесса рекомбинации, напротив, увеличивается с упрочнением связи между металлом и поверхностными атомами водорода, количественной характеристикой которой является теплота адсорбции. В то же время увеличение [c.411]

    Рост новой фазы из раствора осуществляется в две последовательные стадии растворенное вещество должно быть перенесена путем диффузии или конвекции к поверхности, и далее молекулы путем поверхностной реакции встраиваются в растущее выделение. Скорость роста частицы новой фазы будет определяться скоростью медленной стадии. Критическая концентрация достигается спустя некоторое время после начала изотермической выдержки (индукционный период), поскольку скорость распада молекул А велика. [c.105]

    Общий прогрев, предназначенный для удаления основной массы паров воды и углекислого газа с внутренней поверхности оболочки и арматуры, проводится после предварительной откачки. Подъем температуры, выдержка максимальной температуры п скорость охлаждения выбираются с учетом интенсивности общего газо-выделения, скорости откачки, качества газопоглотителя, [c.161]

    При исследовании железоникелевых электролитов было установлено, что получаемые сплавы содержат относительно больше железа, чем растворы, из которых они были получены [12]. Иными словами, при совместном выделении скорость разряда ионов железа увеличивается, а ионов никеля уменьшается, по сравнению со скоростями разряда их в случае раздельного осаждения при одинаковом потенциале. Предполагается, что это явление связано с несколькими причинами [37]. [c.229]


    Допустим, например, что всплываемость нефтяных частиц, содержащихся в воде, характеризуется кривой, показанной на фиг. 35. Требуемый эффект выделения нефти из сточной воды Э = 99%. По графику находим, что при таком эффекте выделения скорость всплывания частиц составляет около 0,35 лш[сек. Эта величина и должна быть положена в основу при определении размеров нефтеловушки. [c.96]

    Аналогичная картина должна наблюдаться и нри замедленном протекании других стадий. В связи с этим при не слишком больших удалениях от состояния рав-нозесия обнаруживается некоторая симметрия в протекании процессов катодного выделения металлов и их анодного растворения. Так, например, анодная по-ляризация ртути, серебра, таллия и кадмия оказывается близкой по величине к катодной поляризации этих же металлов при одинаковых катодной и анодной плотностях тока, т. е. при равной скорости осаждения и растворения. Изменение анодного и катодного перенапряжения с ростом плотности тока точно так же подчиняется для этих металлов примерно одному и тому же закону. [c.476]

    Выделение газовых пузырьков на электродах весьма усиливает массоперенос, при высоких скоростях газо-выделения скорость массопереноса такая же, как и при интенсивном принудительном перемешивании раствора. Это имеет большое значение для технического электролиза. Для описания массопереноса под влиянием газовы-деления на электродах предложено несколько моделей. [c.25]

    Изотермический процесс, когда скорость отвода или подвода тепла пропорциональна его выделению или поглощению в процессе реакции. Реакции, протекающие изотермически, характеризуются постоянством температуры по всему реакционному объему. [c.263]

    Изменение температуры определяется видом кинетической кривой, т. е. кривой зависимости скорости реакции от времени, поскольку выделение или поглощение тепла примерно пропорционально количеству прореагировавшего продукта. [c.263]

    После того как вся кислота прибавлена и выделение СОг ослабеет, пускают воду в холодильник 3 и очень медленно нагревают содержимое колбы, регулируя нагревание в зависимости от скорости прохождения пузырьков газа через поглотители. В конце концов [c.181]

    Все изложенные соображения относятся лишь к грани кристалла определенного символа. При катодном выделении металлов, как правило, образуются поликристаллические осадки, т. е. осадки, состоящие из большого числа связанных между собой мелких кристаллов (или зерен) с гранями различных символов, что осложняет картину процесса. Одно из этих осложнений связано с тем, что грани различных символов растут с неодинаковой скоростью, и характер осадка изменяется в процессе электролиза. Для характеристики катодных осадков наряду с кристаллографической структурой используются поэтому и такие понятия, как структура роста, текстура и характер осадка. [c.343]

    Первым на возможность медленного протекания такой электрохимической стадии указал Р. А. Колли (1880). Большое значение для понимания причин, обусловливающих конечную скорость этого акта, имели работы Леблана (1910) и Н. А. Изгарышева (1915), привлекшие внимание электрохимиков к той важной роли, которую играют явления гидратации и д( гидратации нонов в кинетике электродных процессов. Н. И. Кобозев и Н. И. Некрасов (1930) на примере реакции катодного выделения водорода впервые показали, что состояние частиц, в котором они находятся непосредственно после акта разряда, мол ет существенно отличаться от состояния конечных продуктов электродной реакции. Скорость актов раз- [c.344]

    При заданном перенапряжении зависимость скорости выделения водорода от температуры описывается уравнением (17.120). Энергия активации реакции выделения водорода, рассчитанная по этому уравнению, зависит от перенапряжения водорода. С его увеличением она уменьшается в первом приближении по линейному закону. Экстраполированные до нулевого перенапряжения энергии активации зависят от природы металла и состава раствора. Так, при выделении водорода из кислых растворов, не содержащих поверхностно-активных веществ, энергия активации выделения водорода на ртути составляет около 92 кДж-моль-, на вольфраме— 67 кДж-моль .  [c.402]

    При электрохимическом выделении водорода удаление его адсорбированных атомов может совершаться несколькими способами. Если эта стадия (стадия III в приведенной схеме) является замедленной, то скорость всего процесса должна определяться скоростью наиболее эффективного из указанных выше трех механизмов десорбции. Замедленная рекомбинация, например, означает, что каталитическое образование молекул водорода отличается большим торможением, чем разряд или стадия транспортировки, и в то же время совершается заметно быстрее, чем электрохимическая десорбция или эмиссия водородных атомов. При близких значениях [c.404]


    Временно наиболее эффективным способом удаления адсорбированного водорода. При диффузионном механизме все стадии протекают быстрее, чем удаление молекулярного водорода, растворенного в слое электролита, примыкающем к поверхности электрода. Кроме перечисленных, возможны также и другие кинетические варианты катодного выделения водорода. Так, например, может оказаться, что константы скорости двух или большего числа стадий мало отличаются друг от друга. Тогда при изменении условий, в которых происходит реакция, один механизм может замениться другим. При неизменных условиях на одном и том же электроде вследствие неоднородности его поверхности могут существовать участки, где выделение водорода совершается разными путями. [c.406]

Таблица 19.2. Возможные комбинации стадий, определяющих скорость (А) и обеспечивающих стационарность (В) процесса катодного выделения водорода Таблица 19.2. <a href="/info/1372594">Возможные комбинации</a> стадий, определяющих скорость (А) и обеспечивающих стационарность (В) <a href="/info/1552089">процесса катодного выделения</a> водорода
    Представление о том, что электрохимическая десорбция может определять скорость катодного выделения водорода, было сформулировано впервые Гейровским в 1925 г. [c.407]

    При замедленной рекомбинации для протекания реакции выделения водорода с заданной скоростью на поверхности металла необходим избыток водородных атомов по сравнению с равновесными условиями. При равновесии, т. е. при обратимом значении потенциала водородного электрода, между всеми стадиями электродной реакции существует детальное равновесие  [c.408]

    Появление анодной поляризации можно связать с замедленностью одной из стадий транспортировки, разрушения твердой фазы или ионизации, являющихся обращением соответствующих стадий катодного процесса. При катодном выделении металлов замедленность транспортировки, т. е. недостаточная начальная скорость доставки разряжающихся ионов к электроду, смещает его потенциал в отрицательную сторону. При анодном растворении металла замедленность стадии отвода приводит к накоплению перешедших в раствор ионов вблизи электрода и, соответственно, смещает его потенциал в положительную сторону. [c.476]

    Сравнительные данные по скорости выделения (скорости разложения Са504) при разложении фосфоангидрита с различными составами твердых восстановителей приведены в табл. 10 (см. стр. 148). [c.149]

    СОМ будет ионизация адсорбированного водорода с переходом его в раствор. Таким образом, эта область потенциалов отвечает только стадии разряда (при катодном толчке) и ионизации (при анодном толчке), что позволяет исследовать кинетику одной этой стадии без наложения осложняющих эффектов, связанных с процессами рекомбинации или диссоциации молекул водорода. Изучение зависимости емкости двойного слоя и омического сопротивления (эквивалентного торможению па стадии разряда) от частоты наложенного тока в этой области потенциалов позволило Долину, Эрш-леру и Фрумкину впервые непосредственно измерить скорость акта разряда. Параллельные поляризационные измерения при небольщих отклонениях от равновесного потенциала, где неренапряжение еще линейно зависит от плотности тока, дали возможность найти скорость суммарного процесса и сопоставить ее со скоростью стадии разряда. Было установлено, что акт разряда протекает с конечной скоростью, причем ее изменение с составом происходит параллельно изменению скорости суммарной реакции. В то же время скорость стадии разряда всегда больше, чем скорость суммарной реакции (в 27 раз в растворах соляной кислоты и в И раз в растворах гидроксида натрия). Таким образом, акт разряда хотя и протекает с конечной скоростью, но не определяет скорости всего процесса выделения водорода на гладкой платине и не является здесь лимитирующей или замедленной стадией. [c.416]

    Политропический процесс, протекающий с отводом или подводом тепла, когда скорость отвода или подвода тепла не пропорциональна количеству выделенного или поглощенного тенла. В рассматриваемом случае температура в реакторе также меняется от входа к выходу, но характер температурной кривой зависит в большей степени от работы поверхности теплообмена, чем от вида кинетической кривой. К полптропическим системам могут быть отнесены реакционные секции змеевиков печей термического крекинга и пиролиза, реакторы каталитического крекинга с неподвижным катализатором в процессе регенерации, змеевиковые реакторы полиэтилена ысокого давления и др. [c.263]

    Работа Уильямсона ознаменовала начало изучения химической кинетики — области химии, изучающей скорости химических реакций. Уильямсон ясно показал, что самопроизвольный характер хилшческой реакции в ряде случаев определяет не просто выделение теплоты, а нечто большее. Проводя свои [ногочисленные калориметрические измерения, Бертло и Томсен уже выявили это нечто большее , но, к сожалению, вопрос остался нерешенным из-за того, что работы Томсена были опубликованы на малодоступном ученым норвежском языке. [c.111]

    С ЭТ011 целью газ пропускают над хромоникелевым катализатором, состоящим приблизительно из 95% окиси хрома и 5% никеля. Катализатор получают растворением в воде хромовой кпслоты (Н2СГО4) и азотнокислого никеля, с последующим нагревом раствора при иеремешивапии до полного удаления воды и прекращения выделения двуокиси азота. Частичное гидрирование газов пиролиза, богатых водородом, ведут при температуре около 200° и скорости подачи около 800 л газа (в пересчете на нормальное давление) на 1 л катализатора в час. В газах, бедных водородом, скорость подачи должна быть меньше, а температура выше. [c.71]

    Если в только что описанном примере заменить циклогексан гидрированным мепазином (1 л), ю также вскоре начинается реакция, о чем судят сначала по помутнению и затем по выделению масла. Продукты реакции непрерывно удаляют из реакционной жидкости,. пропуская ее через экстракционную колонну, наполненную разбавленным метанолом. Количество образующейся дисульфоновой кислоты тем меньше, чем больше скорость циркуляции углеводородной смеси. Если через смесь углеводородов пропускать 24 л кислорода, содержащего озон в количестве 0,024 г/л, и 48 л двуокиси серы, то через 24 часа получается 232 г моносульфоновых кислот, 3 г дисульфоновых кислот и 64 г серной кислоты. Если при прочих равных условиях количество озона в кисло-, роде повысить до 0,06 г/л, то через 24 часа в продуктах реакции будет присутствовать 525 г моносульфоновсй кислоты и 157 г серной кислоты. Температура реакции в обоих случаях равна 10—15°. [c.500]

    После этого из воронки 2 вынимают хлоркальцневую трубку 4 и наливают в воронку 50 мл разбавленного (1 1) раствора H I. Снова вставив в воронку трубку 4, очень медленно (по каплям) приливают кислоту из воронки в колбу. При этом сейчас же начинается выделение СОг. Скорость приливания НС1 регулирую1 так, чтобы через склянки 5 w 11 проходило не более 3—4 пузырь ков газа в 1 сек, иначе СОг не будет успевать поглощаться. [c.181]

    В результате электрохимического акта образуется адсорбированный катодом атомарный водород. При заданной плотности тока доля поверхности электрода, занятая атомами водорода, составляет некоторую величину 0 н. Если поляризация электрода обусловлена только замедленностью электрохимической стадии, то все остальные стадии, в том числе и удаление адсорбированного водорода, совершаются с несравненно большими скоростями, чем перенос заряда, и, следовательно, заполнение при данном токе должно быть равно (или почти равно) заполнению 0н в отсутствие результативного тока, т. е. при равновесном потенциале водородного электрода 0 н = 0н- Степень заполнения поверхности электрода адсорбированным атомарным водородом в условиях его катодного выделения определяется в первую очередь природой металла и для данного металла зависит от потенциала электрода. Она ничтожно мала (0 = 0) на Нд, РЬ, Сс1 и на других мягких или ртутеподобиых металлах. В согласии с этим выделение водорода по реакциям (17.78) и (17.79) может происходить несколькими путями и, соответственно, описываться различными кинетическими уравнениями. [c.361]

    Если разряд ионов водорода совсфшается лишь на доле поверхности (1—0н), свободной от адсорбированных атомов водорода, то скорость его выделения для мягких металлов (0н О) из кислых сред (п= 1, 21 = 1) будет подчиняться уравнению (гх — 1)Яф2 [c.361]

    С меньщей уверенностью можно сделать заключение о природе процесса на других металлах второй электрохимической группы — свинце, цинке, кадмии и таллии. Больщинство экспериментальных данных свидетельствует о замедленном протекании разряда с последующей электрохимической десорбцией атомов водорода. Заметное повышение перенапряжения Еюдорода при переходе от положительно заряженной поверхности к поверхности, заряженной отрицательно, наблюдается на свинце, кадмии и таллии и связано с перестройкой двойного слоя, приводящей к десорбции анионов и прекращению их активирующего действия на разряд положительно заряженных гидроксониевых ионов Н3О+ (см. рис. 19.1). Если -бы скорость выделения водорода определялась не разрядом, а другой стадией, например рекомбинацией, то изменение структуры двойного слоя не могло бы вызвать такого изменения водородного перенапряжения. [c.414]

    Из металлов первой электрохимической группы наиболее полно изучена платина, хотя из-за высокой чувствительности ее водородного потенциала к примесям полученные данные не отличаются хорошей воспроизводимостью. Н( сомненно, что в области положительных потенциалов (не очень удаленных от обратимого потенциала водородного электрода) на поверхности платины всегда присутствует адсорбированный водород. Это установлено измерением мкости, а также другими методами. Так, количество адсорбированного водорода можно найти для каждого значения потенциала при помощи кривых заряжения, т. е. кривых, передающих изменение потенциала электрода с количеством подведенного электричества чли (при постоянной силе тока) с течением времени. При таком кулонометрическом определении количества водорода (или иного электрохимически активного вещества) необходимо, чтобы его выделение (или растворение) совершалось со 100%-ным выходом по току. Все возможные побочные реакции — электровосстановление или выделение кислорода, катодное восстановление или анодное окисление органических веществ и других примесей — должны быть полностью исключены. Этого можно достичь двумя методами. В первом из ннх сила накладываемого на ячейку тока настолько велика, что значительно превосходит предельные токи восстановления и окисления примесей их вредное влияние поэтому не проявляется. Заряжение электрода проводят с большой скоростью, а кривую заряжения регистрируют автомати- [c.414]

    Любая из стадий каждого из челырех вариантов может быть замедленной и определять скорость всей реакции. Чтобы сделать выбор между этими теоретически во. шожными случаями и установить действительные причины кислородного перенапряжения, следует воспользоваться критериями, вытекающими из общей теории кинетики электродных процессов. Одним из таких критериев может служить величина наклона полулогарифмических прямых. Как следует из табл. 20.1, наклон Ь при выделении кислорода изменяется в очень широких пределах, принимая, в зависимости от материала анода и состава раствора, следующие значения  [c.425]

    В области малых плотностей тока выделение кислорода на ни- е ю (см. рнс. 20.1, кривая 1, нижний участок) наклон кривой Ь равен 0, что трудно согласовать с предположением о замедленности разряда 1 идроксил-ионов. На этом участке поляризациотиюй кривой кинетика процесса определяется скоростью стадий I, 3 II, 3 или стадией взаимодействия атомарного кислорода [образующегося но уравнению (20.8)] с оксидом никеля  [c.426]

    Обнаруженная М. А. Лошкаревь м адсорбционная поляризация проявляется в том, что при добавлении к раствору некоторых поверхностно-активных веществ (иапример, трибензиламина) изменяется скорость выделения металла на ртутном и на твердых катодах. Она становится, во-первых, меньше той, что наблюдалась до введения добавки, и, во-вторых, не зависящей в широкой области потенциалов от катодного потенциала. Однако после того как достигается определенный (обычно весьма отрицательный) потенциал, действие добавки прекращается. Скорость выделения начинает быстро расти, приближаясь к нормальному для этих условий зна-чеЕигю, отвечающему предельному диффузионному току. Сопоставление результатов иоляризационных измерений на ртутных катодах с электрокапиллярными кривыми и кривыми дифференциальной емкости (снятыми до и после введения добавки) показали, что потенциал, при котором прекращается дйствие добавки, совпадает с потенциалом ее десорбции (рис. 22.5). Действие добавки оказывается при этом специфическим. Одни и те же добавки или определенная их комбинация в разной степени тормозят разряд различных ионов на ртутном катоде. Явление адсорбционной поляризации используется для улучшения качества гальванических осадков при электролитическом получении сплавов. [c.462]

    Приложение этих принципов к расчету скорости саморастворения металлов. можно проиллюстрировать на примерах коррозии цинка и железа в растворе с pH О и активностями соответствующих металлических ионов, равными единице. В выбранных условиях потенциал цинка (если считать, чтэ соверщается только обмен его ионами между металлом и раствоэом) должен отвечать его стандартному потенциалу, т. е. величине — 0,76 В. Однако этот процесс не является единственно возможным при таком значении потенциала. Его величина значительно отрицательнее потенциала равновесного водородного электрода, который в растворе при pH, равном нулю, составляет 0,0 В. Поэтому здесь возможно также выделение водорода со скоростью, определяемой кинетикой этой реакции на цинковом электроде. [c.492]


Смотреть страницы где упоминается термин Выделения, скорость: [c.358]    [c.195]    [c.58]    [c.60]    [c.227]    [c.408]    [c.419]    [c.424]    [c.426]    [c.435]    [c.471]    [c.480]    [c.494]    [c.494]   
Диаграммы равновесия металлических систем (1956) -- [ c.121 ]




ПОИСК







© 2025 chem21.info Реклама на сайте