Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо пассивация

    ПАССИВАЦИЯ ЖЕЛЕЗА В АЗОТНОЙ КИСЛОТЕ [c.77]

    При пассивации железа концентрированной азотной кислотой и при его анодной поляризации в серной кислоте возникает одинаковый Фладе-потенциал, что свидетельствует о принципиальном [c.75]

    Имеется, однако, много примеров, когда потенциал иассивации нельзя связать с образованием ни одного из известных для данного металла оксидов. Так, иапример, для железа потенциал пассивации < п=+0,58 В, в то время как наиболее положительный из всех возможных потенциалов железооксидных электродов, отвечающий системе Fe, FeO, FeaOa, равен всего лишь 0,22 В. Казалось бы, что, поскольку железный электрод здесь является анодом, такая разница обусловлена значительной анодной поляризацией. Но такое объяснение отпадает, потому, что потенциал активации железа также равен +0,58 В, хотя железный электрод поляризуется в данном случае катодно. В связи с этим предположили, что, несмотря на преимущественное растворение железа в виде двухвалентных ионов, оксидная пленка может образоваться при участии иоиов железа с валентностью более трех. Это возможно при условии постепенного окисления железа избытком кислорода в поверхностном слое. В подобном оксидном слое могут поэтому находиться наряду с оксидами F O и РегОз также высшие оксиды, наиример КеОг, которым отвечают более положительные потенциалы. Аналогично объясняется и пассивация никеля. [c.482]


    Снижение скорости коррозии обусловлено пассивацией железа кислородом, о чем свидетельствуют значения потенциалов в насыщенной воздухом воде от —0,4 до —0,5 В, и в насыщенной кислородом воде (28 мл Оа/л) от 0,1 до 0,4 В. Вероятно, при повышенном парциальном давлении Оа поверхности металла достигает больше кислорода, чем может быть восстановлено в результате коррозионной реакции, излишек способен образовать пассивную пленку . Согласно оксидно-пленочной теории, избыток кислорода, предположительно, окисляет пленку РеО, при этом образуется другая пленка, имеющая лучшие защитные свой- [c.101]

    Например, пассиваторы восстанавливаются на катодных участках, при плотности тока, обеспечивающей на анодных участках плотность анодного тока необходимую для пассивации (10— 20 А/см в случае железа). Пассиватор, восстанавливаясь на больших катодных поверхностях, вызывает образование пассивной пленки на небольших анодных участках. [c.76]

    Высокая реакционная способность полиизопрена требует применения эффективных методов его стабилизации. Систематические исследования показали необходимость обеспечения высокой степени чистоты полиизопрена в отношении содержания в нем примесей металлов переменной валентности (железо, медь, титан), так как соединения этих металлов ускоряют окислительную деструкцию каучука. Другой способ повышения окислительной стойкости полимера —пассивация переходных металлов, остающихся в каучуке, путем перевода их соединений в неактивную форму, не оказывающую каталитического влияния на окисление полимера. [c.221]

    Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы НаО и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в НаЗО , или пленка фторида железа на стали в растворе НР являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе К1 + или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле- [c.80]


    Процесс травления ортофосфорной кислотой состоит из следующих непрерывных последовательных операций травление 15—20%-ным раствором ортофосфорной кислоты, нагретым до 50—60 " С, для удаления окалины и продуктов коррозии удаление из трубопроводов остатков раствора и образовавшегося шлама продувкой сжатым воздухом промывка 2%-ным раствором ортофосфорной кислоты для полного удаления остатков шлама и образования на поверхности металла защитной от вторичной коррозии пленки фосфатов железа (пассивация) продувка и сушка протравленных трубопроводов подогретым сжатым воздухом. [c.115]

    На изучение этой темы мы рекомендуем отвести два занятия. На первом занятии учащиеся знакомятся с ролью окисных пленок в защите металлов от коррозии и самостоятельно выполняют опыт искусственного нанесения окисной пленки на железо (пассивация железа в азотной кислоте). [c.32]

    Примеси, обычно содержащиеся в меди (кислород, сера, висмут, свинец, железо), являются, как правило, вредными. Чем чище медь, тем лучшими механическими свойствами и более высокой коррозионной стойкостью она обладает. Особенно вредной является примесь кислорода, так как эта примесь способствует выделению закиси меди по границам зерен в виде эвтектики, которая является причиной хрупкости и хладноломкости меди при ее обработке в холодном состоянии. При взаимодействии с кислородом и другими окислителями медь не способна к пассивации и защитные пленки на ее поверхности не образуются. [c.246]

    Потенциал Р (см. рис. 5.1), при котором начинается пассивация железа (потенциал пассивации) близок к Фладе-потенциалу, но не равен ему, так как, во-первых, существует омическое падение напряжения в изолирующем слое, и во-вторых, вследствие того, что pH электролита в глубине пор этого слоя отличается от pH в объеме электролита (концентрационная поляризация). На процесс депассивации эти обстоятельства влияния не оказывают. [c.75]

    Некоторые металлы, например хром, на воздухе пассивны и остаются блестящими годами, в отличие от железа или меди, которые быстро корродируют и тускнеют в короткое время. Показано, что пассивные свойства хрома присущи и железохромистым сплавам при содержании Сг — 12 % и более (такие сплавы известны как нержавеющие стали). Типичные зависимости скорости коррозии, коррозионного потенциала и критической плотности тока от содержания хрома показаны на рис. 5.9—5.11. Заметим, что на рис. 5.11 /крит пассивации Сг — Ее-сплавов при pH = 7 достигает минимального значения (около 2 мкА/см ) при содержании Сг 12 % . Это значение так мало, что коррозионные токи [c.88]

    Согласно адсорбционной теории, пассивность хрома и нержавеющих сталей, благодаря их повышенному сродству к кислороду, может достигаться путем непосредственной хемосорбции кислорода из воздуха или водных растворов. Количество кислорода, адсорбированного таким образом, имеет тот же порядок величины, что и пассивная пленка на железе, образованная путем анодной пассивации или пассивации в концентрированной азотной кислоте или хроматах [27]. Сходным образом атмосферный кислород может адсорбироваться непосредственно на железе и запассивировать его в аэрируемых щелочных растворах, а также в растворах близких к нейтральным с повышенным парциальным давлением кислорода .  [c.82]

    Прецизионными опытами установлено, что предварительная дозированная посадка кислорода на поверхность железа в вакууме облегчает его последующую пассивацию в щелочи, если количество кислорода на поверхности железа превышает семь монослоев. При меньших количествах кислорода наблюдается не облегчение, а затруднение пассивации [27а]. — Примеч. ред. [c.82]

    Хром (Е° = —0,74 В) более отрицателен в ряду напряжений, чем железо (Е° = —0,44 В). Однако благодаря склонности к пассивации (Ер = 0,2 В) потенциал хрома в водных средах обычно положителен по отношению к потенциалу стали. При контакте со сталью, особенно в кислых средах, хром активируется. Следо вательно, коррозионный потенциал стали с хромовым покрьггием которое в некоторой степени всегда пористо, более отрицателен, чем потенциал пассивации хрома [191. В указанных условиях хром, подобно олову, выполняет функцию протекторного покрытия однако это связано с его активацией, а не с образованием комплекс ных соединений металлов. Благодаря стойкости слоя металличе ского хрома предупреждается подтравливание наружного полимер ного покрытия. [c.241]

    В табл. 2.3 представлены теоретически возможные (если процесс обусловливается только диффузией влаги и кислорода к поверхности металла) и реально наблюдаемые (графа 4) скорости коррозии железа. Сопоставление полученных данных показывает, что диффузионный перенос влаги и кислорода через пленку не может лимитировать развитие коррозионного процесса под полимерной пленкой. Реально наблюдаемые величины коррозионных потерь не соответствуют рассчитанным величинам, что можно объяснить пассивацией железа и торможением анодного процесса [49]. [c.31]


    Очистка от окислов. На металлической поверхности могут образовываться окислы таких металлов, как железо, алюминий или медь, которые оказывают влияние на эффективность работы термосифонов. Если теплоноситель является восстановительным агентом, присутствие окисляемых металлов способствует коррозии фитиля и корпуса или выделению НКГ. Окислы коррозионно-стойкой стали удаляются путем погружения в раствор 50%-ной по объему серной кислоты при 339 К, по крайней мере, на одну минуту с последующим погружением в раствор, состоящий из серной и соляных кислот, при комнатной температуре. Удаление окислов коррозионно-стойкой стали объединяется с процессом пассивации. [c.251]

    Фрумкин С сотрудниками [165] изучал действие кислорода "на железо, в результате которого происходит пассивация последнего. В этом случае ионы железа также мигрируют поверх первого мономолекулярного слоя окиси, увеличивая тем самым способность металла испускать электроны. В зависимости от температуры процесс окисления заканчивается после образования на поверхности металлического железа от двух до четырех слоев окиси, которые предохраняют металл от дальнейшего окисления точно также, как два слоя окиси цезия, находящиеся на поверхности цезия, защищают его от окисления при —180° С. При 100° С максимум разности потенциалов по отношению к вольфраму (минимум работы выхода) наблюдается в том случае, когда покрытие адсорбированным кислородом составляет 22-10 молекул на 1 см" истинной поверхности железа (см. рис. 23). При 270° С этот максимум соответствует адсорбции 72-10 молекул кислорода. После перехода через максимум первоначальная разность потенциалов по отношению к вольфраму достигается при указанных температурах в присутствии соответственно 60 10 и 100-10 молекул адсорби- [c.106]

    Работа железного электрода улучшается также при введении в массу гидрата закиси никеля и небольших количеств сульфидной серы. Первая добавка поддерживает активную массу в дисперсном состоянии. Сохраняя на поверхности большое число активных центров, гидрат закиси никеля облегчает процесс заряда электрода. Сера способствует увеличению скорости реакции разряда благодаря уменьшению пассивации железа. Однако на процесс заряда сера оказывает отрицательное влияние, блокируя активные центры на поверхности частиц закиси железа. [c.90]

    Времени. Найдено несколько методов для инициирования реакции растворения в случае пассивации стали. Простой и практичный метод заключается в присоединении к топливной сборке перед загрузкой ее в аппарат для растворения небольшого куска обычного железа или другого активного металла. При погружении в кислоту активный металл начинает немедленно растворяться. Поскольку он имеет электрический контакт со сборкой, он депассивирует последнюю и вызывает ее растворение. Однако даже в присутствии железа пассивация стимулируется азотной кислотой при концентрации ее выше 0,01 М. [c.428]

    Ультразвук в одних случаях затрудняет наступление пассивности металлов (при анодном растворении железа, меди, кадмия, стали Х18Н9) в результате десорбции кислорода и диспергирования защитных пленок, а в других случаях (А1 и Ni в NaaS04, Fe в NaOH + СГ) облегчает пассивацию, по-видимому, из-за удаления с поверхности металла активаторов. [c.369]

    Возникновение пассивного состояния металла определяется не только окислительной способностью агрессивной среды. Из-нестны случаи пассивации металлов и в нсокпслительиой среде, например молибдена в соляной кислоте, магния в плавиковой кислоте и др. Пассивное состояние наступает также, как было указано в гл. 1П, вследствие аиодной поляризации металла, [роцессу пассивации способствует увеличение анодной нлотно-сти тока. Во многих случаях ири достижении некоторой плотности тока происходит внезапный переход электрода в пассивное состояние (например, железа в концентрированном растворе NaOH при повышенной температуре). [c.60]

    Интенсивность корозии титана в соляной кислоте можно уменьшить добавкой в раствор замедлителей коррозии— окислителей (азотная кислота, хромовая, К2СГ2О7, КМПО4, П2О2, О2 и др.), а также солей некоторых металлов (меди, железа, платины и др.). При этом потенциал новой системы титан— раствор приобретает более положительное значение. В таком окисле, как ТЮг, число дефектов решетки на границе окисел — газ настолько мало, что достаточно незначительного количества кислорода, чтобы их ликвидировать. Вновь появляющиеся в процессе растворения дефекты благодаря присутствию кислорода будут устраняться, т. е. процесс пассивации будет преобладать над процессом растворения титана. [c.282]

    В работе [204] изучалось влияние попеременного действия окислительной и восстановительной среды на дезактивацию металлических примесей. Катализаторы со свежими отложениями металлов (0,2 вес.% железа) многократно подвергали чередующимся циклам крекинга и регенерации, затем испытывали их способность к закоксовыванию. Было показано, что коксообразующая способность металла заметно снижается после проведения даже первых циклов. В результате дальнейших циклов коксообразование также снижается, но незначительно. Последующие эксперименты показали, что для пассивации примесей металлов необходимо 1тменно чередование окислительной и восстановительной сред. После действия на загрязненный катализатор 4% кислорода при 482 °С в течение 400 мин (что эквивалентно пяти циклам) практически никакой пассивации не происходило. Заметной пассивации металла при замене стадии крекинга восстановлением в среде водорода не наблюдается. Увеличение продолжительности регенерации вдвое, повышение концентрации кислорода в газе, подаваемом в регенератор, с 4 до 21% не оказывало существенного влияния на результаты. Очень мало влияет на пассивацию металла и температура повторное проведение опытов при 506°С вместо 482 °С дало почти совпадающие результаты. [c.143]

    Опасения повышенной коррозии, которые обычно вызывает применение хлорного железа при гидрогенолизе, являются преувеличенными. Как указывает Тодт, коррозия в любом случае происходит только в растворах, действующих как окислители [58, т. И, с. 20, 48], а растворы моносахаридов являются восстанавливающими. Тодт также замечает [58, т. I, с. 93], что ионы трехвалентного железа, присутствующие в растворе, пассивируют легированные стали, и содержание кислорода в растворе при этом не столь важно действие пассивации основано на адсорбции. Впрочем, после смешения сырья с водородом в присутствии никелевого катализатора из раствора должны исчезнуть (прогидрироваться) содержащиеся в нем следы кислорода. Известно, что в обычных условиях слабые растворы хлорного железа вызывают сильную коррозию никеля [58, т. I, с. 390], однако никелевый катализатор успешно проводит гидрогенолиз в присутствии хлорного [c.123]

    Фосфорная кислота является окислителем, поэтому такие металлы, как молибден, никель, цирконий, склонны к пассивации. При нормальной температуре скорость коррозии железа возрастает по мере повышения концентрации кислоты лишь до определенного предела. В концентрированной кислоте иа железе образуется пассивная пленка. При введении п состав стали элементов, хорошо пассивирующихся в кислоте (N1, Мо). их коррозионная стоГг-кость повышается. Высокой коррозионной стойкостью [c.850]

    Большим достоинством титана является его способность сохранять пассивное состояние даже в растворах, содержащих значительные концентрации хлор-иона. Ниже приведены потенциалы и токи пассивации железа, никеля, хрома и титана в 1-н Н2504 [c.72]

    В группу пассиваторов входят неорганические окислители, имеющие свойство в контакте с железом реагировать медленно, хотя под действием катодного тока они восстанавливаются довольно быстро. Пассиваторы адсорбируются на поверхности металла, увеличивая эффективную катодную поверхность. Чем выше концентрация пассиватора, тем легче он адсорбируется, тем меньше становятся анодные участки, что способствует увеличению анодной поляризации и полной пассивации. Для образования пассивной пленки на железе, погруженном в 0,1 % К2СГО4, требуется около 0,5—2 ч, причем в аэрируемом растворе этот процесс идет быстрее .  [c.76]

    Еще Фладе заметил [6], что пассивная пленка на железе тем дольше остается устойчивой в серной кислоте, чем длительнее была предварительная пассивация железа в концентрированной азотной кислоте. Другими словами, пленка стабилизируется продолжительной выдержкой в пассивирующей среде. Франкенталь [17] заметил также, что хотя для пассивации 24 % Сг—Ее в 1 н. НаЗО достаточно менее монослоя Оа (измерено кулонометрически), пленка становится толще и устойчивее к катодному восстановлению, если сплав некоторое время выдержать при потенциалах положительнее потенциала пассивации (см. рис. 5.1). Возможно,. наблюдаемое стабилизирующее действие является результатом того, что положительно заряженные ионы металла проникают в адсорбированные слои отрицательно заряженных ионов и молекул кислорода благодаря сосуществованию противоположных зарядов поддерживается тенденция адсорбционной пленки к стабилизации. Данные метода дифракции медленных электронов для одиночных кристаллов никеля [28], например, свидетельствуют о том, что предварительно сформированная адсорбционная пленка состоит из упорядоченно расположенных ионов, кислорода и никеля, находящихся на поверхности металла приблизительно в одной плоскости. Этот первоначальный адсорбционный слой более термоустойчив, чем оксид N10. При повышенном давлении кислорода на первом слое образуется несколько адсорбционных слоев, состоящих, возможно, из Оа. В результате образуется аморфная пленка. С течением времени в такую пленку могут проникать дополнительные ионы металла, особенно при повышенных потенциалах, становясь подвижными в пределах адсорбированного кислородного слоя. Окамото и Шибата [29] показали, что пассивная пленка на нержавеющей стали 18-8 содержит НаО аналогичные результаты получены для пассивного железа [30]. [c.83]

    Электронная конфигурация сплавов, состоящих из двух и более переходных металлов, и их пассивация не столь хорошо изучены, как в случае медно-никелевых систем тем не менее можно принять несколько полезных упрощающих допущений. Например, принимают, что наиболее пассивный компонент сплава является акцептором электронов, стремясь заимствовать электроны у менее пассивного компонента. Следовательно, в нержавеющих сталях -электронные вакансии хрома заполняются электронами, заимствованными от атомов железа [461. При критическом составе сплава (менее 12 % Сг) все вакансии хрома заполнёны, и коррозионное поведение сплава подобно поведению железа. При содержании Сг выше 12 % его -электронные вакансии не заполнены и сплав по коррозионному поведению подобер хрому. [c.97]

    Показано, что для пассивации железа молибдатами и воль-фраматами, которые проявляют ингибирующие свойства в растворах, близких к нейтральным, также требуется наличие растворенного кислорода [12, в отличие от случая хроматов и нитритов. Растворенный кислород способствует созданию катодных участков в количестве, достаточном для пассивации ограниченного числа остающихся анодных участков, на которых с повышенной скоростью протекает восстановление М0О4 или WO4". В отсутствие кислорода /крит на этих участках не достигается. [c.264]

    Ингибирующее действие полифосфата натрия может быть отчасти связано со способностью полифосфатов препятствовать восстановлению кислорода на поверхности железа, облегчая тем самым адсорбцию растворенного кислорода, которая приводит к пассивации металла. Определенную роль играют и другие факторы. Так, имеются данные, что на катодных участках образуются защитные пленки [22, 23], создающие диффузионный барьер. Возникновением таких пленок, по-видимому, объясняется ингибирующий эффект, наблюдаемый даже на стали, погруженной в 2,5 % раствор Na l, который содержит несколько сотен миллиграммов полифосфата кальция на литр раствора [24]. При низких концентрациях растворенного кислорода полифосфат натрия усиливает коррозию, ввиду его способности образовывать комплексы с ионами металла (см. рис. 16.2). Полифосфаты кальция, железа и цинка являются лучшими ингибиторами, чем поли- [c.265]

    Для протекторов при защите подземных сооружений часто используют магний. Чистые металлы - магний, алюминий, цинк - не получили практического применения для изготовления протекторов, так как магний имеет сравнительно низкую токоотдачу, а алюминий и цинк склонны к пассивации. Введение добавок позволяет получить сплавы с более отрицательными, чем у основного металла, потенциалами, которые могут оставаться активными, равномерно разрушаться. В магниевые сплавы для протекторов вводят добавки алюминия, цинка и марганца. Алюминий улучшает литейные свойства сплава и повышает механические характеристики, но при этом немного снижается потенциал. Цинк облагораживает сплав и уменьшает вредное влияние таких примесей, как медь и никель, позволяя повышать их критическое содержание в сплаве. Марганец вводят в сплав для осаждения примесей железа. Кроме того, он повышает токоотдачу и делает более отрицательным потенциал протектора. Основные загрязняющие примеси в сплаве - железо, медь,, никель, кремний, увеличивающие самокоррозию протекторов и снижающие срок их службы. [c.158]

    Дрейли и Разер 2, 8] объясняют наблюдаемые факты тем, что выделяющийся на поверхности раздела металл—оксид газообразный водород разрушает защитную оксидную пленку. Если алюминий контактирует с более электроотрицательным металлом либо легирован никелем или железом, то можно предполагать, что ионы Н+ разряжаются на катодных участках, а не на алюминии, и оксидная пленка остается неповрежденной. Однако полезное действие катодных участков можно также объяснить [91 анодной пассивацией или катодной защитой алюминия. Это влияние сходно с действием легирующих добавок платины и палладия (или контакта с ними) на нержавеющую сталь аналогичным образом эти металлы пассивируют также титан в кислотах (см. разд. 5.4). [c.344]

    Рассчитайте минимальную концентрацию кислорода (в мл/л) необходимую для пассивации в 3 % растворе NajS04 железа и сплава Сг—Fe с 12 % Сг. Коэффициент диффузии для Ог при 25°С D = 2-10 mV . (Исходить из равенства предельной плотности диффузионного тока восстановления кислорода и критической плотности тока, необходимой для пассивации.) [c.390]

    Таким образом, электрохимические исследования показывают, что механизм разрушения металла под защитными неадгезирован-ными полимерными пленками аналогичен механизму коррозии железа во влажной атмосфере. Независимо от наличия активатора на поверхности металла растворение железа в обоих случаях протекает в области активно-пассивного состояния. Разница заключается лишь в том, что активатор увеличивает плотность тока пассивации, а защитная полимерная пленка в силу диффузионного ограничения доставки влаги уменьшает ток пассивации. В общем случае ток пассивации является функцией влажности атмосферы, концентрации активатора и влагопроницаемости защитной пленки. [c.39]

    В условиях влажных сред и достаточно высокой проницаемости пленки по влаге и кислороду коррозионный процесс может лимитироваться скоростью химического растворения окиси по реакции (2.10). Поляризационная диаграмма для этого случая п))едставлена на рис. 2.15, а. Как показывает диаграмма, железо находится в пассивном состоянии, прп этом плотность тока коррозиЕ строго равна току полной пассивации. При увеличении скорости доставки активирующих частиц (С1, НС1, SO 2 и других) ток полной пассивации возрастает и соответственно увеличивается коррозионный ток (ij,. . ., ). Рассмотренный случай чаще всего реализуется на металле под сплошным покрытием в условиях чистой влажной атмосферы, во влажных грунтах и аэрируемых электролитах. [c.42]

    Чем меньше содержание в ферромарганце железа, тем лучше растворяется анод, меньше его пассивация и выше выход перманганата калия по току. В процессе анодного растворения ферромарганца содержаш,иеся в нем углерод и кремний окисляются до СОг и Si02. [c.205]

    Потенциал, при котором наступает пассивность (так называемый потенциал пассивации), и глубина пассивации, т. е. степень уменьшения скорости растворения, зависят от свойств металла и электролита. Так, никель, железо и стали пассивируются быстро и глубоко в растворах щелочей и поэтому практически не растворяются в этих средах. Это явление широко используется на практике в качестве нерастворимых анодов в щелочных растворах применяют никель и сталь. Свинец быстро и глубоко пассивируется в сернокислых нейтральных и кислых растворах. В практических условиях свинец и его сплавы применяются в качестве нерастворимых анодов в растворах, содержащихЗОГ. [c.250]


Смотреть страницы где упоминается термин Железо пассивация: [c.167]    [c.33]    [c.479]    [c.60]    [c.76]    [c.120]    [c.261]    [c.263]    [c.294]    [c.27]   
Неорганическая химия (1974) -- [ c.389 ]

Неорганическая химия Издание 2 (1976) -- [ c.444 ]

Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Пассивация



© 2025 chem21.info Реклама на сайте