Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытия катодные

    При локальном разрушении покрытия катодного типа корродировать начинает сталь, поэтому при таких покрытиях необходимо стремиться к сохранению сплошности защитного слоя металла. Анодные покрытия, хотя и защищают сталь электрохимически, но достаточно эффективно они защищают стальные изделия только в [c.75]

    При выборе покрытий следует учитывать относительную активность основного металла и металла покрытия (катодное или анодное покрытие). [c.528]


    Металлические покрытия (катодные и анодные). [c.227]

    Подводные и подземные переходы и отводы от магистральных трубопроводов длиной более 200 м могут быть вварены в общую магистраль только после испытания их изоляционного покрытия катодной поляризацией. [c.206]

    Пористость. Основной характеристикой, определяющей защитные свойства катодных покрытий, является их пористость В связи с тем, что N1 — Р-покрытия — катодные по отношению ко многим машиностроительным материалам (таким, как сталь, алюминиевые сплавы и др ), исследователи уделяют большое внимание пористости никелевого покрытия, осажденного химически Установлено, что химические N1 — Р-покрытия менее пористые, чем покрытия той же толщины но полученные электрохимическим способом. При определении пористости никелевых покрытий различной толщины было обнаружено [2], что химически восстановленные никелевые покрытия толщиной 8—10 мм по пористости соответствовали электролитическим осадкам толщиной 20 мкм [c.11]

    Для судов без покрытия катодная защита от коррозии практически невозможна или неэкономична ввиду большого требуемого защитного тока и неблагоприятного его распределения. К тому же между стальной стенкой корпуса и противообрастающим покрытием должен иметься электроизолирующий слой, чтобы не допустить электрохимического восстановления токсичных соединений металлов. Катодные продукты электролиза сами по себе не могут предотвратить обрастания. Наоборот, медь, инертная против обрастания при свободной коррозии, при катодной защите может подвергнуться обрастанию [20]. [c.357]

    Во многих случаях коррозию металлических конструкций, погружаемых в морскую воду, можно значительно уменьшить с помощью катодной защиты. Защита стали, например, обеспечивается при потенциале около—0,80 В (в. к. э.). Наряду с различными покрытиями катодная защита является широко распространенным средством борьбы с коррозией подводных конструкций. [c.168]

    Наличие примесей в бомбардирующем газе может заметно уменьшать скорость осаждения. Такие газы, как СО2 и Н2О, в тлеющем разряде разлагаются с образованием О2, а присутствие этого газа может уменьшить скорость осаждения вдвое. Скорость осаждения уменьшается с увеличением температуры образца, хотя это явление может быть нехарактерным для покрытия катодным распылением. Наконец, скорость осаждения тем выше, чем ближе расположена мишень к образцу, однако при этом увеличивается также тепловая нагрузка на образец. Распыленные частицы попадают на поверхность подложки с высокими кинетическими энергиями в виде либо атомов, либо кластеров атомов, но не в виде пара. Имеются данные о том, что распыляемые атомы обладают энергией, достаточной для того, чтобы проникнуть на один или два атомных слоя поверхности, на которой они оседают. [c.199]


    Артефакты, возникающие при нанесении покрытия катодным распылением [c.205]

    Оборудование нефтеперерабатывающих заводов подвергается самым различным видам коррозии. Несмотря на то, что разработано много методов борьбы с коррозией, начиная с обессоливания нефти, введения нейтрализаторов, подбора стойких металлов защитных покрытий, катодной защиты и технологических мероприятий, ущерб от коррозии все еще очень велик. [c.181]

    Защитные свойства покрытия на основе цинксиликатных композиций обусловлены участием стального и цинкового электродов, электролит между которыми находится в порах пленки затвердевшего жидкого стекла (5102 +силикаты цинка и кальция). Цинксиликатное покрытие рассматривают как анодное покрытие, причем частицы цинка замкнуты на подложку через электрическую цепь, в которой участвуют кристаллы карбонатов и силикатов и жидкого электролита, причем потенциал системы равен потенциалу цинка, а электрическая проводимость покрытия равна 10 см. Введение в рецептуру покрытия катодных замедлителей увеличивает защитный эффект. [c.130]

    Металлические покрытия должны быть непроницаемыми для коррозионных агентов. Однако, если в металлическом покрытии есть дефекты в виде пор, царапин, вмятин, то характер коррозионного разрушения основного металла определяется электрохимическими характеристиками обоих металлов. По отношению к стали цинковое покрытие является анодным, а медное покрытие - катодным. Поэтому первоначально начинает разрушаться цинк. При этом он защищает от разрушения железо или сталь тем дольше, чем боль- [c.267]

    А. М. Смирнова и Н. Т. Кудрявцев [26] исследовали влияние ультразвука на величину катодной поляризации, выход хрома по току, рассеивающую способность и качество хромовых покрытий. Катодная поляризация изучалась в электролите состава (в г л)  [c.75]

    ЗОЛОЧЕНИЕ — нанесение на поверхность металлических и неметаллических изделий слоя золота. Золочением создают декоративные, антикоррозионные, герметизирующие, защитные, оптические, электропроводящие, антифрикционные и многоцелевые нокрытия. Золото отличается высокой хим. стойкостью, не тускнеет со временем, и декоративные покрытия из него улучшают внешний вид изделий. Толщина таких покрытий 1 -ь 3 мкм (см. также Декоративные покрытия). Катодные антикоррозионные покрытия из золота довольно дорогостоящи, поскольку их толщина должна быть не менее 30—35 мкм (см. также А нти-коррозионные покрытая). Герметизирующие и защитные покрытия (толщиной 15—20 мкм) практически непроницаемы для кислорода, водорода, азота, сероводорода, сернистого газа, окислов азота и др. газов при т-ре до 800—900° С, что обеспечивает герметичность (напр., при уплотнении швов) и защиту изделий от взаимодействия с этими газами (см. также Защитные покрытия). Оптические покрытия (толщиной обычно около 0,1—0,2 мкм) отличаются значительной стабильностью, высокой (болео 90%) отражательной способностью в инфракрасной области спектра и уступают покрытиям из др. металлов лишь в его ближней видимой и ультрафиолетовой частях (см. такжо Оптические покрытия). Электропроводящие покрытия (толщиной 1- -3 мкм) обеспечивают стабильную и высокую электропроводность поверхности изделий. Антифрикционные покрытия характеризуются низким коэфф. трения (см. [c.465]

    В зависимости от электрохимических свойств металлических покрытий относительно защищаемого металла различают анодные покрытия, катодные покрытия и катодные покрытия, вызывающие анодную пассивность. [c.57]

    В сероводородсодержащих средах металлические А1-, Сё-, Н1-покрытия— катодные по отношению к стали, значительно облагораживают ее стационарный потенциал. В работе [45] показано, что в присутствии ионов хлора потенциал покрытия может смещаться в отрицательную область, и покрытие может стать анодом по отношению к стали. Цинковое покрытие в сероводородсодержащей среде как без ионов хлора, так и при наличии их всегда является анодом по отношению к стальной основе. [c.32]

    В книге рассмотрены основы теории коррозии применительно к подземным металлическим сооружениям. Изложены результаты длительных коррозионных испытаний металлов и методы оценки коррозионной активности почв. Основное внимание уделено вопросам применения различных методов защиты от подземной коррозии. Наряду с описанием свойств широко применяемых битумных покрытий и методов их нанесения приводятся результаты промышленных испытаний различных полимерных покрытий. Катодная защита подземных металлических конструкций является весьма эффективным средством борьбы с коррозией. В книге освещается теория катодной защиты и излагаются методы расчета катодной и электро-дренажной защиты. [c.2]

    Новейший способ нанесения золотых покрытий — катодное распыление. Электрический разряд в разряженном газе сопровождается разрушением катода. При этом частицы катода летят с огромной скоростью и могут осаждаться не только на металле, но и на других материалах бумаге, дереве, керамике, пластмассе. Этот способ получения тончайших золотых покрытий применяется при изготовлении фотоэлементов, специальных зеркал и в некоторых других случаях. [c.197]


    Методы защиты оборудования при закачке теплоно- сителя в пласт. Увеличение долговечности работы трубопроводов и колонн насосно-компреооорных труб нагнетательных скважин в условиях термического -воздействия на нефтяной пласт горячей водой или паром может быть достигнуто различными способами применение коррозионностойких материалов, высокотемпературной термомеханической обработки при изготовлении стальных асосно-ко-мпрессорных труб, защитных покрытий, катодной защиты, термической деаэрации воды, [c.216]

    При наличии электрического поля на границе мегалл — покрытие развиваются электрохимические реакции, продукты которых могут способствовать разрушению покрытий. Ясно, что чем меньше сопротивление покрытия, тем выше при прочих равных условиях скорость электрохимических процессов и тем сильнее их влияние на устойчивость покрытий. Прохождение через покрытие катодного тока (например, при электрохимической защите) нередко сопровождается отслоением защитной пленки, что объясняется более усиленной мшрацией воды через покрытие выделением газообразного водорода, вызывающим отрыв покрытия защелачиванием среды в пограничном слое, которое способствует омылению некоторых компонентов покрытия. [c.44]

    Оба металла известны с глубокой древности. Оловом покрывают листовое железо (белая жесть). Покрытие катодное. Оба металла используют в виде многочисленных сплавов (баббиты, бронзы, припои, типографский сплав и т. д.). Много свинца идет на пластины аккумуляторов, для зашиты кабелей, для изготовления камер в сернокислотной промышленности и т. д. Оксиды свинца применяют в малярных красках свинцовый. сурик РЬ02-2РЬ0 (или РЬз04), желтая модификация РЬО ( массикот ) и др. Свинцовый глет РЬО используется в изготовлении пластин сернокислотных аккумуляторов. [c.370]

    В сероводородсодержащей среде (2,5 г/л HjS + 3 % Na l) стационарные потенциалы диффузионных покрытий определяются основными насыщающими элементами. Хромовые и боридные покрытия - катодные по отношению к стали, стационарный потенциал их составляет по хлор-серебряному электроду соответственно -505 и 90 мВ. [c.88]

    Известно, что одной из основных причин, обусловливающих ухудшение механических свойств металла при его контакте с растворами кислот (кислотное травление металлов, кислотная обработка теплосилового оборудования), с влажным газообразным сероводородом, с водными растворами и с двухфазными системами, содержащими сероводород (газо- и нефтепроводы), а также в условиях катодной поляризации (катодное травление, нанесение гальванических покрытий, катодная защита металлоизделий в морской воде), является наводороживаиие металла [45 52  [c.41]

    Некоторые специалисты выразили скептическое отношение к результатам этих исследований. Еще в 1935 г. в одной из работ Американского института нефти в Лос-Анжелесе утверждалось, что токи от цинковых анодов (протекторов) на сравнительно большом расстоянии уже не могут защитить трубопровод и что защита от химического воздействия (например кислот) вообще невозможна. Поскольку в США вплоть до начала текущего столетия трубопроводы нередко прокладывали без изоляционных покрытий, катодная защита для них была сравнительно дорогостоящей и для ее осуществления требовались значительные токи. Поэтому естественно, что хотя в США в начале 1930-х гг. и защищали трубопроводы длиной около 300 км цинковыми протекторами защита катодными установками (катодная защита током от постороннего источника) обеспечивалась только на трубопроводах протяженностью до 120 км. Сюда относятся трубопроводы в Хьюстоне (штат Техас) и в Мемфисе (штат Теннесси), для которых Кун применил катодную защиту в 1931—1934 гг. Весной 1954 г. И. Денисон получил от Ассоциации инженеров коррозионистов премию Уитни. При этом открытие Куна стало известным вторично, потому что Денисон заявил На первой конференции по борьбе с коррозией в 1929 г. Кун описал, каким образом он с применением выпрямителя снизил потенциал трубопровода до — 0,85 В по отношению к насыщенному медносульфатному электроду. Мне нет нужды упоминать, что эта величина является решающим критерием выбора потенциала для катодной защиты и используется теперь во всем мире . [c.37]

    Если толщина слоя среды над объектом защиты уменьшается, например на дне резервуаров или в трюмах судов, то зона действия катодной защиты тоже сокращается. В таких случаях при защите горизонтальных поверхностей, особенно имеющих защитное покрытие, катодная поляризация может быть обеспечена рассеянием металлического порошка из соответствующего протекторного сплава. Такие порошки состоят из зерен цинка (крупностью 100—10 мкм) с активирующими добавками. Частицы цинка прочно спекаются с днищем и осаледаются преимущественно в углублениях, например возникших вследствие коррозии. В сочетании с уже описывавшейся протекторной проволокой таким способом можно эффективно защищать, например, днища трюмов судов (см. раздел 18. 6), [c.195]

    Автор совместно с А.М.Крохмальным [118, 170, с, 57—62] провел электрохимические исследования коррозионно-усталостного разрушения образцов из углеродистых сталей 20 и 45 с некоторыми покрытиями катодного типа, в частности после химического никелирования и диффузионного хромирования. Никелирование проводили в слабокислом растворе (pH =4,6 -г 4,7), содержащем сернокислый никель, гипофосфит натрия, уксуснокислый натрий, при 85—90°С в течение 3 ч. При этом [c.177]

    При низком вакууме углерод испаряется в атмосфере аргона при давлении около 1 Па. Атомы углерода претерпевают многократные соударения и рассеиваются во всех направлениях. Этот метод полезен для получения прочных пленок углерода и для нанесения покрытий на образцы ео сложным рельефом поверхности перед анализом 1В режимах рентгеновского микроанализа, катодолюминесценции и отраженных электронов. Однако в общем случае полезность этого способа для образцов, предназначенных для анализа в РЭМ, сомнительна, в частности, потому, что коэффициент вторичной эмиссии для углерода очень мал. Несомненно, что много1 ратное рассеяние и поверхностная диффузия углерода позволяют с большей эффективностью наносить покрытие на шероховатые образцы, и по этой причине этот метод целесообразно применять в тех случаях, когда нельзя наносить покрытие катодным распылением. [c.197]

    В процессе нанесения покрытия катодным распылением может происходить значительное повышение температуры образца. Источниками тепла служат излучение от мишени и электронная бомбардировка образца. Вначале происходит быстрое повышение температуры, которая затем выравнивается и в зависимости от природы покрываемого материала может вызывать термическое повреждение. В зависимости от ускоряющего напряжения и тока разряда температура может стать до 40 К выше температуры окружающей среды. Однако, как указано ранее, эффекта нагрева можно полностью избежать при использовании модифицированного диодного распылителя с охлаждением, где подвод тепла, обусловленный электроцной бомбардировкой, составляет лишь 200 мВт, или частично его уменьшить, работая с обычным диодным распылителем в импульсном режиме при низкой входной мощности. [c.206]

    Пз-за невысокого вакуума в большинстве устройств для нанесения покрытия катодным распылением, наличия обратного потока масла из механического форвакуумиого пасоса и трудностей, связанных с размещением эффективных охлаждаемых ловушек в тракте откачки, проблема загрязнения может стать потенциально серьезной, особенно если в форвакуумной линии не установлено ловушек. Многие описанные артефакты, по-вп-димому, обусловлены загрязнениями, и необходимо соблюдать предосторожность при установке режима работы и использовании распылительной установки для нанесения покрытия. [c.207]

    В последние годы разрабо ганы и начинают внедряться новые типы изоляционных покрытий, катодные станции с повышенным коэффициентом полезного действия, протекторы с высокой токо-отдачен. [c.4]


Смотреть страницы где упоминается термин Покрытия катодные: [c.251]    [c.33]    [c.45]    [c.297]    [c.18]    [c.20]    [c.402]    [c.52]    [c.33]    [c.45]    [c.105]    [c.107]    [c.135]    [c.170]   
Электроосаждение металлических покрытий (1985) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Ток катодный



© 2025 chem21.info Реклама на сайте