Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биологическая коррозия обрастание

    Биологическая коррозия обусловливается биологическими объектами (бактериями, микромицетами и другими организмами) По механизму развития биокоррозию можно отнести к химической Однако наличие биообъекта в среде и на объекте коррозии привносит дополнительный фактор — клеточную биомассу (фактор обрастания пли/и зарастания) Поэтому биокоррозия нередко сопрягается с биоповреждением Биоповреждение — понятие более широкое, чем биокоррозия, [c.292]


    Высокая агрессивность и биологическая активность морской воды, способствующая биологической коррозии и обрастанию аппаратуры при ее использовании, рассмотрены в предыдущей главе. Они определяют необходимость использования специальных мер защиты аппаратуры от коррозии в морской воде, тем более что микробиологическое обрастание толщиной 250 мкм на теплообменнике, в котором протекает морская вода, на 50 % уменьшает коэффициент теплопередачи. [c.26]

    Морская коррозия протекает по механизму электрохимической коррозии с кислородной деполяризацией. Особенностями морской коррозии металлов при этом являются как высокая агрессивность морской воды и морской атмосферы, так и наличие дополнительных механических факторов воздействия на материал — эрозии и кавитации. Не менее важна роль биологического фактора — обрастания подводной части металлических конструкций морскими организмами. [c.60]

    Нередко в системах оборотного водоснабжения наблюдают биологическую коррозию при участии продуктов, выделяемых микроорганизмами биологических обрастаний. [c.419]

    Применение озона имеет ряд преимуществ перед хлорированием. Введение озона в воду не связано с образованием побочных примесей, время распада его ограничено минутами, а действие на биологические компоненты обрастания в 15—20 раз сильнее действия хлора. При длительной эксплуатации озонаторной установки не возникает инцидентов санитарного характера. Даже в наиболее старых трубопроводах после озонирования воды не наблюдалось роста бактерий и коррозия металла не превышала обычных размеров, а в ряде случаев была даже ниже, чем при хлорировании. [c.58]

    В системе его водоснабжения вода подавалась на предприятия без всякой подготовки. В отдельные периоды года, особенно весной, почти вся теплообменная аппаратура забивалась посторонними включениями и остатками биологических обрастаний, что приводило к продолжительным нарушениям технологического режима в системах ректификации и абсорбции и обильному выбросу газов и легковоспламеняющихся жидкостей в атмосферу. Неочищенная промышленная вода вызывала также коррозию теплообменников. [c.246]

    Весьма важную роль в регулировании коррозионной стойкости морских судов играет биологический фактор обрастание днищ и бортов кораблей различными микроорганизмами растительного и животного происхождения — кораллами, диатомеями, мшанками и т. д. Появление некоторых из них, например болянусов, разрушает защитные покрытия, приводит к неравномерной аэрации корродирующей поверхности и возникновению щелевой коррозии. Некоторые микроорганизмы (например, диатомеи) в процессе фотосинтеза выделяют кислород, что ускоряет и облегчает процесс коррозии. Однако в ряде случаев наличие на новерхности металла биологических организмов может тормозить коррозионный процесс. Так, обрастание стали мидиями снижает скорость коррозии, что связано со значительным потреблением кислорода этими моллюсками и, как следствие, снижением его концентрации у поверхности корродирующего металла. [c.61]


    Теплообменная аппаратура в процессе эксплуатации под действием оборотной воды подвергается не только коррозионному разрушению, приводящему к уменьшению толщины стенки теплопередающей поверхности, но и обрастанию, как биологическому, так и за счет отложений продуктов коррозии и карбонатов кальция и магния, содержащихся в циркулирующей воде. Как коррозия, так и отложения наиболее сильно сказываются на работе трубных пучков кожухотрубчатых теплообменников. Нормальная эксплуатация кожухотрубчатых аппаратов требует периодической очистки внутренних поверхностей трубок от отложений, ухудшающих теплопередачу и уменьшающих сечение охлаждающего потока. Очистку проводят механически (ершами) через каждые 6 мес эксплуатации. Разрушения от коррозии, истирание и механические воздействия при чистке нередко приводят к перфорации трубок. Дефектные трубки изолируют заглушками. Пучок требует полной замены, когда заглушено более 20 % трубок. Срок службы трубных пучков значительно ниже срока службы сосудов и массообменных аппаратов (20 лет) и срока службы трубопроводов (10 лет) и при использовании углеродистой стали и пресной оборотной водой не превышает 2,5 лет. Таким образом, затраты на капитальный ремонт конденсационно-холодильного оборудования на химических предприятиях составляют от 25 до 40 % затрат на ремонт основного оборудования. Следовательно, при выборе материала для трубных пучков конденсаторов-теплообменников небходимр учитывать качество охлаждающей воды и сопоставлять стоимость конструкционного материала с расходами на очистку воды и капитальный ремонт теплообменников. В табл. 2.5 [101 указаны сплавы меди, рекомендуемые для изготовления теплообменной аппаратуры в зависимости от качества охлаждающей воды. [c.32]

    Качество воды должно отвечать требованиям, исключающим коррозию аппаратуры и трубопроводов, отложение солей жидкости и биологическое обрастание. [c.100]

    Как показали исследования, биохимически очищенные нейтральные промышленно-ливневые сточные воды после дополнительного отстоя в биологических прудах и фильтрования через кварцевые фильтры приближаются по содержанию взвешенных органических веществ ВПК, ХПК к качеству свежей воды. При возврате этих вод в оборотную систему водоснабжения скорости коррозии, образования накипи и биологического обрастания теплообменных поверхностей значительно уменьшаются по сравнению с вариантом возврата только механически очищенных сточных вод с подпиткой свежей водой. Это объясняется стабилизирующим влиянием образующейся в аэротенках углекислоты, а также наличием в них остаточных фосфатных соединений. [c.205]

    Биологическое обрастание и коррозия в морских средах [c.443]

    К —коррозия в результате образования концентрационных элементов Б — коррозия вследствие биологического обрастания О —отсутствие видимых следов коррозии П — питтинг (случайное распределение) Л — локальная коррозия. [c.59]

    Как видно из табл. 17, в неподвижной воде на малых глубинах нержавеющие стали 302, 321 и 316 подвержены сильной локальной коррозии. На больших глубинах коррозионное поведение сталей 304 и 316 меняется, однако при этом часто также наблюдается локальное разрушение (табл. 19). Нержавеющие стали в этих условиях склонны к биологическому обрастанию, причем в гораздо большей степени, чем, например, медноникелевые сплавы [32]. [c.62]

    Расчет по потерям массы. В скобках указано число измеренных (глубина >0,1 мм) питтингов, если их было меньше 20. Р — равномерная коррозия. К — коррозия в результате образования концентрационных элементов. Б — коррозия вследствие биологического-обрастания. О — отсутствие видимых следов коррозии. П —питтинг (случайное распределение). М —местная коррозия (случайное [c.80]

    Пассивность никеля при полном погружении в морскую воду может поддерживаться в быстром потоке. Средняя скорость коррозии никеля в условиях погружения может достигать 130 мкм/год [4]. В неподвижной воде никель подвержен биологическому обрастанию и под образовавшимся слоем, так же как и в щелях, может происходить необратимая потеря пассивности. При 16-летней экспозиции в Тихом океане средняя скорость коррозии никеля, определенная по потерям массы, была равна 30,7 мкм/год (см. табл. 28) [40]. Однако уже после первого года экспозиции наблюдалась перфорация пластин толщиной 6,35 мм в результате локального питтинга. На больших глубинах средние скорости коррозии никеля составляли от <2,5 до 46 мкм/год [43]. В щелевых условиях наблюдалась перфорация образцов всего за 197 дней. При этом общая поверхностная коррозия была очень мала, а все коррозионные потери приходились на питтинг. Наблюдалась [c.81]

    Зависимость коррозионных потерь от времени экспозиции для образцов, испытывавшихся на среднем уровне прилива, имеет интересные особенности, являющиеся серьезным аргументом в пользу изложенной выше теории биологического контроля скорости коррозии в морской воде. Эта кривая представлена на рис. 122. Видно, что в течение первого года экспозиции скорость коррозии стали была очень велика (примерно 250 мкм/год), почти вдвое выше, чем при экспозиции в условия> постоянного погружения. Образцы в зоне прилива также подвергались обрастанию (в основном усоногими раками), но оно происходило значительно медленнее, чем при постоянном погружении в том же месте, и только через год на металле образовался слой, обладающий высокими защитными свойствами. После этого (в интервале от 1 до 2 года испытаний) скорость коррозии упала до очень малого значения (менее 10 мкм/год). Медленное обрастание и больший доступ кислорода к поверхности металла в зоне прилива (по сравнению с погруженными образцами) задержали возникновение полностью анаэробных условий на металлической поверхности, что, очевидно, и проявилось в увеличении периода защиты металла вследствие обрастания. Если бы рост бактерий на этой стадии можно было затормозить, то скорость коррозии осталась бы на очень низком уровне, сделав возможной длительную эксплуатацию углеродистой конструкционной стали без защитных покрытий. Это было бы аналогично случаю атмосферной коррозии стареющих (низколегированных) сталей, при многолетней эксплуатации которых практически не требуется никакого ухода. [c.444]


    Биологический фактор (обрастание подводной части конструкции различными морскими растительными и животными организмами мшанками, балянусами, диатомеями, кораллами) значительно ускоряет коррозию металлов в морской воде, вызывая разрушение защитных покрытий (что наблюдается в присутствии ба-лянусов), неравномерную аэрацию и щелевую коррозию. Кроме того, некоторые организмы (например, диатомеи) в результате фотосинтеза выделяют кислород, что ускоряет коррозию, так как [c.400]

    Применение биологически очищенных сточных вод для подпитки систем оборотного водоснабжения может привести к интенсивному биологическо му обрастанию поверхностей теплообмена и трубопроводов за счет внесения с этими водами солей, содержащих биогенные элементы — азот или фосфор. В системах, где не предусматривается ионообменное корректирование солевого состава воды, для предупреждения биологического обрастания используют хлорирование воды дозами 5— 10 мг/л при соблюдении остаточной концентрации активного хлора около 1 мг/л и добавлении в воду ингибиторов коррозии. [c.29]

    При организации оборотного водообеспечения предусматривают методы борьбы с карбонатными отложениями, биологическими обрастаниями, коррозией оборудования, а также методы подготовки подииточной воды. [c.85]

    Содержащиеся в оборотной воде соли и другие примеси вызывают коррозию оборудования. Хлориды ускоряют коррозию вследствие увеличения кислотности воды и их разрущающего действия на пассивирующие пленки сульфаты агрессивно действуют на бетон. Диоксид углерода замедляет образование защитных пленок. Для защиты от коррозии в оборотных системах применяют различные ингибиторы. Процесс коррозии приостанавливают хромат и бихромат калия. Они же замедляют биологические обрастания. Для снижения коррозии воду обрабатывают также фосфатами, которые образуют пленку, изолирующую металл от воды. В отличие от хроматов фосфаты благоприятствуют развитию биологических обрастаний, поэтому эти химикаты иногда применяют совместно. Один из способов защиты металла от коррозии — защитные покрытия смолами, красками, лаками и эмалями, однако они недолговечны и восстановить их можно только во время ремонта. [c.86]

    Щелевой коррозией называют интенсивное локальное разрушение металла конструкций в щелях и зазорах шириной от нескольких сотых долей миллиметра до нескольких миллиметров, которые образуются как вследствие особенностей самой конструкции (отверстия, соединения внахлестку, фланцевые, заклепочные, болтовые и т. д.), так и в ходе эксплуатации (осаждение на поверхности металла частиц дыма, песка, продуктов коррозии и других веществ, а также ее биологическое обрастание ). Возникновение щелевой коррозии обычно связано с присутствием в щелях и зазорах небо [ьших количеств неподвижного раствора электролита. [c.444]

    Блок оборотного водоснабжения состоит из насосной, водоох-ладителей-градирен, нефтеотделителей (для первой- системы оборотного водоснабжения), установки по обработке воды для предотвращения коррозии, карбонатных отложений и биологических обрастаний холодильной аппаратуры и трубопроводов (для первой и второй систем оборотного водоснабжения), продуктоловушки (для четвертой системы оборотного водоснабжения производства синтетических жирных кислот), нейтрализатора (для четвертой системы оборотного водоснабжения производства неорганических кислот). [c.196]

    Если нержавеющие сталп предполагается использовать в условиях полного погружения, то для предупреждения разрушения металла необходимо принять специальные меры защиты. Необходимо либо обеспечить поддержание пассивности, либо использовать катодную защиту. Большая скорость потока морской воды у поверхности металла позволяет обеспечить приток свежего кислорода, необходимого для пассивации, что ускоряет залечивание дефектов защитной окисной пленки. Быстрый поток, кроме того, препятствует биологическому обрастанию. В неподвижной воде важным средством борьбы с коррозией является катодная защита, позволяющая предотвратить опасность возникновения и развития щелевой, питтинговой, туннельной и кромочной коррозии, а также всех видов селективного разрушения металла. [c.60]

    Причиной накипеобразования является разложение содержащихся в ней бикарбонатов кальция, которое может происходить даже при слабом (примерно до 30 °С) нагреве воды. Поэтому внутреннюю поверхность трубок конденсаторов турбин, контактирующую с охлаждающей водой, приходится промывать кислотами. В некоторых случаях имеем место биологическое обрастание трубок, которое усиливает коррозию. С внешней стсроны конденсаторные трубки соприкасаются с конденсатором пара, в котором может содержаться аммиак. [c.82]

    Оборотное водоснабжение часто связано с необходимостью преодоления возникающих трудностей в виде коррозии металла и загрязнения теплообменных аппаратов и сооружений системы осадившимися взвешенными веществами, отложениями карбоната кальция и биологическими обрастаниями. Недоучет этих затруднений или неправильный выбор средств их предупреждений приводит к нерациональному использованию воды, боль- [c.9]

    Мышьяковистая медь (99,4% Си, 0,35% Аз, 0,03% Р) имеет высокую теплопроводность и хорошо противостоит биологическому обрастанию. Однако она недостаточно стойка к действию сульфидов, эрозионнокоррозионного разрушения (ударной коррозии) и коррозии под действием аммиака, содержащегося в паре. [c.55]

    Обрастание — сложное биологическое явление, в нем принимают участие около 2500 разных микро- и макроорганизмов. Отмечены случаи обрастания подводных частей судов весом до 30 кг/м [73]. Подсчитано, что за одно доковаиие с корпуса корабля среднего водоизмещения может быть снято до 200 т обрастателей. Обрастатели увеличивают трение между корпусом и слоями воды. Вследствие обрастания судно теряет первоначальную обтекаемость, а в связи с этим — скорость и маневренность. Обрастание приводит к перерасходу топлива, ухудшению эксплуатационных показателей, разрушению защитного лакокрасочного покрытия, усилению коррозии. В США потери судоходных компаний, связанные с обрастанием, составляют более 100 млн. долл. в год. [c.71]

    В гораздо более агрессивной среде, какой является морская вода, скорость коррозии определяется деятельностью и взаимодействием морских микроорганизмов и бактерий. В условиях постоянного полного погружения стальные пластины сначала корродировали с очень высокой скоростью, но быстро обрастали морскими организмами, в дальнейшем этот слой оказывал существенное защитное воздействие. В отсутствие обрастания наибольшие коррозионные потери массы (среди четырех партий образцов) наблюдались бы, несомненно, именно з морской воде. Такое предположение подтверждается сравнением данных для солоноватой и морской воды на рис. 121, а также результатами, полученными при испытаниях в Карибском море, которые обсуждаются ниже. В слегка солоноватой воде обрастание морскими организмами не присходит, поэтому скорость коррозии выше, чем в морской воде, хотя сама по себе малая соленость уменьшает коррозионную активность воды. В результате коррозионные потери в солоноватой воде после 4-летней экспозиции были гораздо выше, чем в морской воде, где проявилось защитное действие биологического обрастания. [c.443]

    Биологические обрастания вызываются двумя группами организмов водорослями и бактериями. Последние обычно являются слизеобразующими, вырабатывающими в процессе жизнедеятельности желатинообразную массу. Бактериальное обрастание систем происходит в трубопроводах и теплообменных аппаратах. Желатинообразный внешний слой хорошо предохраняет слизистую массу от воздействия химических и физических агентов, а эти биологические осадки стимулируют развитие питтинговой коррозии. Меньше всего обрастают микроорганизмами трубки из сплава ЛОМШ70-1-0,05, больше всего — трубки из сплава МНЖ5-1. [c.201]

    Бактерии также оказывают влияние на скорость коррозии. Суль-фатвосстанавливающие бактерии, встречающиеся в донных отложениях и в иле, вырабатывают сульфиды, агрессивные по отношению к таким металлам, как сталь и медь. В то же время биологическое обрастание может способствовать защите металла от коррозии. Сплошное покрытие из морских организмов на стали может уменьшать скорость ее коррозии, препятствуя доставке кислорода к поверхности металла. При наличии продуктов обмена веществ, например маннита, образующегося при воздействии бактерий на водоросли, коррозия некоторых металлов может усиливаться. [c.9]

    В теченпе периода актив ной жизнедеятельности на погруженной в воду поверхности можпо обнаружить множество различных организ- мов. С точки зрения коррозии наибольшее значение имеют сидячие организмы. Они попадают на покрытые биологической слизью поверхности в виде крошечных зародышей и прочно закрепляются, а затем быстро достигают зрелости и теряют подвижность. Клапп [4] перечисляет наиболее распространенные формы сидячих организмов, с которыми связано биологическое обрастание. [c.21]

    Поскольку измейение солености сопровождается, как правило, и другими эффектами, то суммарное влияние этих изменений на коррозионные процессы следует определять в каждом конкретном случае отдельно. Например, растворимость кислорода в воде Каспийского моря должна быть существенно ниже, чем в морасой воде с соленостью 35 %о. Коррозия в разбавленной морской воде, встречающейся в устьях рек, может быть более сильной, хотя сам по себе электролит может быть менее агрессивным. В отношении растворенных карбонатов обычная морская вода, как правило, ближе к состоянию насыщения, тогда как разбавленная морская вода не насыщена и в ней менее вероятно образование осадка карбонатного типа, что приводит к усилению коррозии. В разбавленной морской воде затруднена, а иногда и совсем невозможна жизнедеятельность морских организмов, в результате чего уменьшается тенденция к образованию на металле защитного слоя при биологическом обрастании. [c.23]

    Никель—медь. В конструкциях, работающих в быстром потоке морской воды, такие сплавы, как Монель 400 и Монель К500, демонстрируют прекрасную коррозионную стойкость. Приток кислорода достаточен для поддержания пассивности, а большая скорость движения воды препятствует биологическому обрастанию. Результаты нспытаннй в быстром потоке, представленные в табл. 29, показывают, что оба сплава Монель значительно более стойки к коррозии в таких условиях, чем стали и сплавы на основе меди. [c.82]

    К таким факторам относятся образование защитной поверхностной пленки, концентрация в воде растворенного кислорода и ионов металлов, скорость и температура воды, а также биологическое обрастание. Наличие электрического контакта меди с другим металлом чаще всего отрицательным образом сказывается на коррозионном поведении второго элемента такой гальванической пары (скорость его коррозии возрастает). Независимо от гальванических эффектов, обычной формой коррозии латуней с высоким содержанием цинка является обесцинко-ванпе. Коррозионные факторы, перечисленные выше, часто взаимосвязаны и их относительная важность может зависеть от конкретных условий. [c.97]

    В лаборатории фирмы 1псо (Райтсвилл-Бич, Сев. Каролина) в течение 5 лет проводились исследования обрастания и коррозии в морской воде [1,74]. Сильно корродирующие материалы, такие как сталь, подвержена и сильному обрастанию, но этот слой легко удаляется, а периодически просто отваливается вместе с продуктами коррозии. Пассивные металлы, например алюминий, также быстро обрастают, но в этом случае биологический слой прочно сцеплен с поверхностью металла, а щелевая коррозия под этим слоем приводит к питтингу. Токсичные металлы, такие как бериллий и свинец, также подвержены обрастанию. Медные сплавы обладают стойкостью к обрастанию, что объясняется образованием на их поверхности продуктов коррозии, содержащих закись меди, токсичную для морских организмов. Часто образующийся на медных сплавах гидроксихлорид меди не токсичен и в этом случае обрастание происходит, но легко поддается очистке. Чистая медь и сплавы 90—10 Си —№ и 70—30 Си — N1 в равной степени стойки к обрастанию. Присутствие медных сплавов не защищает от обрастания соседние детали конструкций, изготовленные из других материалов. Это [c.185]

    В работе [177] приведены данные о коррозии некоторых сплавов на различных глубинах (7, 27, 42 и 80 м) в Черном море. Титан обладал стойкостью на всех глубинах и скорость коррозии была <0,01 г/(м-ч). На образцах из нержавеющей стали 18Сг —9№ наблюдался питтинг (2,8 мм после экспозиции в течение 21 мес), но с увеличением глубины погружения коррозия уменьшалась. На глубине 80 м наблюдалась лишь слабая щелевая коррозия. Повышение стойкости объяснялось уменьшением температуры и более низкой концентрацией растворенного кислорода на больших глубинах. Наименьшая коррозия углеродистой стали наблюдалась на глубине 27 м (0,039 г/м -ч), что авторы связывают с более интенсивным биологическим обрастанием на этом уровне. Коррозия медных сплавов усиливалась с глубиной (0,042 г/(м -ч) при погружении на 80 м), что объяснялось образованием на меди в темноте коррозионной пленки, не обладающей защитными свойствами. [c.187]


Смотреть страницы где упоминается термин Биологическая коррозия обрастание: [c.55]    [c.311]    [c.81]    [c.201]    [c.17]    [c.33]    [c.56]    [c.34]    [c.58]    [c.101]    [c.134]    [c.441]   
Морская коррозия (1983) -- [ c.101 , c.431 , c.432 , c.447 , c.448 ]




ПОИСК





Смотрите так же термины и статьи:

Биологическая коррозия

Биологическое обрастание

Биологическое обрастание и коррозия в морских средах

Обрастание

Предотвращение биологических обрастаний систем водоснабжения щелочная обработка воды с введением ингибитора коррозии



© 2024 chem21.info Реклама на сайте