Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислы азота взаимодействие

    Во многих реакциях катализаторами являются продукты реакции или исходные реагирующие вещества (автокатализ). Примером автокатализа может служить растворение меди в азотной кислоте, при этом катализатором является образуемый в результате реакции окисел азота. Другим примером автокатализа может служить реакция взаимодействия перманганата калия в сернокислой среде со щавелевой кислотой или ее солями (уравнение реакции —см. стр. 325). Образующиеся в результате реакции ионы двухвалентного марганца Мп" катализируют реакцию. Эта реакция широко используется в качественном и количественном анализе. [c.75]


    Двуокись азота — газ бурого цвета, хорошо растворяется в воде. Как кислотный окисел она взаимодействует с водой, образуя две кислоты (см. выше). [c.242]

    Элемент азот, стоящий в естественной последовательности атомов за углеродом,— уже явный неметалл, но среди неметаллов он один из самых неактивных. Заставить азот вступить во взаимодействие с кислородом исключительно трудно — для этого нужна температура гораздо выше 1000 градусов. Зато с водой окисел азота дает сильную азотную кислоту. [c.166]

    Окись азота мало растворима в воде и не взаимодействует с нею. Это безразличный окисел. [c.163]

    Наиболее важна в практическом отношении возгонка металлов в присутствии кислорода, азота, водорода, хлоридов и инертных газов. В присутствии кислорода на поверхности возгоняемого металла образуется его окись в виде пленки, через которую при возгонке должны диффундировать металл и примеси, находящиеся в нем. В определенных случаях эта окисная пленка по отношению к некоторым примесям действует как запорный слой, не пропускающий эти примеси в газовую фазу. Так, если скорость испарения металла невелика и окисная пленка не имеет разрывов или металл по поверхности специально засыпан слоем его окисла, то металлические примеси, восстанавливающие этот окисел, задерживаются в слое окисла. Например, цинк помещают в тигель и засыпают окисью цинка, при возгонке цинка многие примеси (магний, марганец, алюминий) будут восстанавливать окись цинка и задерживаться в ней. Отделить цинк от кадмия и ртути таким путем нельзя, потому что эти металлы не взаимодействуют с окисью цинка. [c.27]

    Если нагревать платиновую проволоку в среде кислорода, то происходит падение давления. Кинетика этой реакции и анализ продуктов показывают, что кислород конденсируется на стенках сосуда в виде окисла РЮг. Летучий окисел РЮг образуется, во-первых, из испаряющихся атомов платины и газообразного молекулярного кислорода, а во-вторых, при непосредственном взаимодействии кислорода с поверхностью платины. Скорость реакции пропорциональна Рог, а энергия активации Е равна - 63 ктл-моль . Подобное же уменьшение давления наблюдается и при проведении реакций на проволоках в среде азота, но здесь оно происходит не из-за образования соединения, а из-за окклюзии азота отложившейся платиной, действующей в качестве геттера. [c.116]

    Химическая активность титана зависит от чистоты металла и температуры. При нагревании до 500—600° начинается взаимодействие компактного титана с кислородом и азотом воздуха, которое сопровождается образованием окисно-нитридной пленки. Вследствие подобия структур металла и пленки последняя держится очень прочно и хорошо защищает металл от дальнейшего окисления. Выше этой температуры пленка становится более проницаемой для кислорода и азота. В интервале 600—1200° титан сравнительно более стоек, чем нержавеющая сталь. Около 1200° компактный титан загорается на воздухе и в атмосфере азота. Последнее свойство характерно лишь для немногих элементов. Выше 800° титан разлагает пары воды — образуется окисел и вы- [c.183]


    При взаимодействии кобальта с кислородом воздуха свыше300°С, а также в результате нагревания с парами воды образуется окисел СоО. С водородом и азотом кобальт практически не реагирует, предполагают, что гидриды и нитриды кобальта не существуют (о гидрид-ном пробеле см. [2]). Однако интерметаллиды на основе кобальта, например La os, благодаря гибкости структуры, обилию пустот различной конфигурации в кри сталле активно взаимодействуют с молекулярным водородом и используются как его аккумуляторы [2]. [c.137]

    Например, по отношению к двуокиси азота бензол и нафталин ведут себя различно. В то время как первый реагирует с ней в отсутствие активаторов крайне медленно, нафталин взаимодействует очень быстро, переходя в а-нитронафталин. Скорость взаимодействия нафталина с азотной кислотой зависит от присутствия в ней окислов азота и возрастает параллельно увеличению концентрации последних. Если азотная кислота не содержит окислов азота, то нафталин можно пронитровать, только употребляя очень концентрированную азотную кислоту, причем действующим агентом является нит-роний-катион N02. Азотная кислота невысокой концентрации служит только источником двуокиси азота. Так же как и в предельном ряду, наиболее эффективным агентом является именно этот окисел. [c.882]

    Бертолле исследовал также синильную кислоту и обнаружил, что в ее состав входит углерод, азот и водород. Кислорода в этой кислоте он не нашел. Пытаясь объяснить причины кислотности синильной кислоты, Бертолле подробно изучил взаимодействие этой кислоты с различными веществами. Между прочим он обратил внимание на то, что при действии на синильную кислоту хлора образуется новое газообразное вещество. Исходя из точки зрения (выработанной им совместно с Лавуазье), что хлор представляет собой окисленную соляную кислоту (т. е. окисел муриевой кислоты), Бертолле пришел к выводу, что при действии на синильную кислоту хлор отдает последней свой кислород, в результате чего образуется окисленная синильная кислота . Таким образом, Бертолле рассматривал свойства синильной кислоты с тех же самых позиций, что и соляной ( муриевой ) кислоты. Образование при описанной реакции хлористого циана было установлено значительно позднее. [c.390]

    Окись азота N0 — бесцветный газ, т. кип. —151,8°, т. пл. —163,6°. Теплота образования — = 21,6 ккал/моль. Хотя N0 слмый эндотермичный из А. о., но именно этот окисел и образуется при взаимодействии N2 и О2 это, в частности, связано с тем, что реакция N2-f02->2N0 не сопровождается умепьшеггием энтропии (что имеет место при синтезе всех других А. о. из простых тел), поскольку в результате этой реакции не уменьшается число молекул [c.35]

    А. И. Титовым было замечено, что ароматические соединения могут подвергаться нитрованию по различным механизмам в различных условиях в зависимости от нитрующего агента и, особенно, от реакционной способности органического соединения [42]. Так, например, по отношению к двуокиси азота бензол и нафталин ведут себя различно. В то время как первый реагирует с ней в отсутствие активаторов крайне медленно, нафталин взаимодействует очень быстро, переходя в а-нитронафталин. Скорость взаимодействия нафталина с азотной кислотой зависит от присутствия в ней окислов азота и возрастает параллельно увеличению концентрации последних. Если азотная кислота не содержит окислов азота, то нафталин можно пронитровать, только употребляя очень концентрированную азотную кислоту, причем действующим агентом является нит-роний-катион N0 . Азотная кислота невысокой концентрации служит только источником двуокиси азота. Так же как и в предельном ряду, наиболее эффективным агентом является именно этот окисел. [c.759]

    Если окисел спекается при 1300—1400° С, а лабораторные печи рассчитаны на 1200° С, то рекомендуется проводить двукратный обжиг спекают при 1200° С, затем образец тщательно растирают в ступке в присутствии воды до сметанообразного состояния и проводят повторный обжиг спрессованного образца при 1200° С. Спекание во всех случаях проводят в течение 2—3 ч. Некоторые низшие окислы (например, закиси меди, кобальта и никеля) при высоких температурах устойчивы, поэтому их можно обжигать непосредственно на воздухе. Однако при охлаждении, особенно если оно идет медленно, окисел иногда с поверхности образца частично окисляется. В этом случае тонкий поверхностный слой окисла шлифуют наждачной шкуркой. Чтобы избежать окисления, можно охлаждать образец в атмосфере аргона или азота. Многие низшие окислы (РеО, Рез04, М0О2, ТЮ, Т120з, УаОз, ЩОг) при высоких температурах легко окисляются. Поэтому их следует обжигать в вакууме или в атмосфере индифферентного газа (азота, аргона, гелия). Трубку с образцами продувают газом и закрывают резиновыми пробками, вставляя одну из пробок неплотно, чтобы при нагревании часть газа могла выйти из трубки. После достижения необходимой температуры трубку плотно закрывают пробками. Азот для этой цели можно получить взаимодействием нитрита натрия с хлоридом аммония и собрать его в газометре. Для удаления следов кислорода и паров воды азот перед подачей в реактор пропускают через склянку Вульфа с щелочным раствором пирогаллола, а затем через склянку с концентрированной серной кислотой и через колонку с фосфорным ангидридом. После того как весь воздух будет вытеснен из трубки для обжига, отводящий конец ее плотно закрывают пробкой. [c.113]


    Трехокись азота N203, ангидрид азотистой кислоты — темносиняя жидкость, застывающая при сильном охлаждении в бледно-голубую массу. Этот окисел существует только в твердом состоянии при низких температурах в виде жидкости и пара он в значительной степени диссоциирован на N0 и КОа. Вследствие легкой обратимости реакции газообразная смесь равных объемов N0 и КОа при большинстве химических реакций ведет себя подобно соединению КаОд нри взаимодействии со щелочами в водных растворах образуются нитриты  [c.25]


Смотреть страницы где упоминается термин Окислы азота взаимодействие: [c.312]    [c.331]    [c.485]    [c.693]    [c.724]    [c.305]    [c.344]    [c.148]    [c.183]   
Технология связанного азота Издание 2 (1974) -- [ c.2 , c.4 , c.403 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие окислов азота с боранами и боргалогенидами

Взаимодействие окислов азота с олефинами

Металлы окислы, взаимодействие с азотом

Окислы азота азота

Окислы азота взаимодействие с водой

Окислы азота жидкие, взаимодействие с водо

Получение нитридов взаимодействием азота или аммиака со смесью окислов с углем

Получение окислов азота каталитическим окислением аммиака . 242. Взаимодействие окиси азота с кислородом

Получение цианистоводородной кислоты путем взаимодействия углеводородов с азотом, аммиаком и окислами азота

Скорость взаимодействия жидких окислов азота с водой

Физико-химические основы взаимодействия окислов азота С водой



© 2025 chem21.info Реклама на сайте