Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень элементов группы азота

    Общая характеристика элементов главной подгруппы V группы периодической системы. Азот. Строение атома, строение молекулы, степени окисления. Круговорот азота в природе. Получение, физические и химические свойства азота. Аммиак, строение молекулы, получение, физические и химические свойства. Восстановительные свойства аммиака. Аммиачная вода. Соли аммония, их получение. Термическое разложение солей аммония. Оксиды азота, их получение и основные химические свойства. Азотистая кислота. Окислительно-восстановительные свойства соединений азота со степенью окисления +3. Азотная кислота, ее получение и химические свойства. Окислительные свойства азотной кислоты в реакциях взаимодействия с металлами и неметаллами. Царская водка. Соли азотной кислоты, их термическое разложение. Азотные удобрения. Фосфор, строение атома, степени окисления. Аллотропия. Физические и химические свойства. Фосфин. Фосфиды, их гидролиз. Оксиды фосфора (III) и (V), их получение, свойства. Ортофосфор-ная кислота, ее получение. Одно-, двух- и трехзамещен-ные фосфаты. Их растворимость и гидролиз. Метафос-форная кислота, ее общая характеристика. Фосфорные удобрения. [c.7]


    Главную подгруппу пятой группы составляют азот, фосфор, мышьяк, сурьма н висмут. Электронные конфигурации всех этих элементов см. в табл. 1, на внещнем электронном уровне элементов содержится по пять электронов. Поэтому элементы подгруппы азота могут проявлять в своих соединениях степень окисления от (3—), до (5 + ). [c.298]

    К подгруппе ванадия относятся элементы побочной подгруппы пятой группы ванадий, ниобий и тантал. Имея в наружном электронном слое атома два или один электрон, эти элементы отличаются от элементов главной подгруппы (азота, фосфора и др.) преобладанием металлических свойств и отсутствием водородных соединений. Но производные элементов обеих подгрупп в высшей степени окисленности имеют значительное сходство. [c.651]

    Аналогичное поведение обнаруживается и у элементов группы VA, но граница между металлами и неметаллами в этой группе проходит ниже. Азот и фосфор являются неметаллами, химия их ковалентных соединений и возможные состояния окисления определяются наличием пяти валентных электронов в конфигурации Азот и фосфор чаще всего имеют степени окисления — 3, -Ь 3 и +5. Мыщьяк As и сурьма Sb-семи-металлы, образующие амфотерные оксиды, и только висмут обладает металлическими свойствами. Для As и Sb наиболее важным является состояние окисления + 3. Для Bi оно единственно возможное, если не считать степеней окисления, проявляемых в некоторых чрезвычайно специфических условиях. Висмут не может терять все пять валентных электронов требуемая для этого энергия слишком велика. Однако он теряет три бр-электро-на, образуя ион Bi .  [c.455]

    Сложные молекулы и ионы. К этой группе восстановителей относятся молекулы таких веществ, в которых элементы-восстановители обладают промежуточной степенью окисления моноксид азота, моноксид углерода, моноксиды железа и хрома, диоксиды серы и марганца, сернистая кислота и ее соли, азотистая кислота и ее соли, пероксид водорода и другие. Значительная часть этих соединений (диоксиды серы и марганца, сернистая и азотистая кислоты, пероксид водорода и др.) в зависимости от свойств веществ, с которыми они реагируют, могут проявлять как окислительные, так и восстановительные свойства. Так, диоксид серы или сернистая кислота при взаимодействии с окислителями (кислород, галогены) проявляют восстановительные свойства, а при взаимодействии с сероводородом — окислительные. [c.20]


    Элементы группы азота обнаруживают еще более разнообразные тенденции к изменению свойств, чем халькогены, причем часто образование тех или иных продуктов в большей степени зависит от скоростей реакций, чем от положения равновесия в них. Азот — типичный неметалл, в водных растворах его соединений для азота характерно существование трех устойчивых степеней окисления, однако в силу кинетических причин возможно образование большого числа других состояний. Висмут уже вполне типичный металл и существует только в двух относительно устойчивых состояниях, одно из которых — свободный элемент. Фосфор и мышьяк довольно реакционноспособны мышьяк обладает несколькими метастабильными состояниями, а фосфор значительным их числом. [c.470]

    Элементы группы 5А проявляют самые разнообразные свойства, от сильно неметаллических у азота до явно металлических у висмута. Азот и фосфор обнаруживают степени окисления от -Ь 5 до — 3. Фосфор, не столь электроотрицательный, как азот, чаще, чем азот, встречается в состояниях с положительными степенями окисления. Важнейшим источником азота служит земная атмосфера, в которой он существует в виде молекул N2- Наиболее важным промышленным процессом связывания N2 в соединения является процесс получения аммиака по методу Габера. Другой важный промышленный процесс, процесс Оствальда, используется для превращения МНз в азотную кислоту НМОз-Это сильная кислота и одновременно хороший окислитель. Соединения азота применяются как важные сельскохозяйственные удобрения. [c.330]

    V группа, главная подгрупп а азот, фосфор, мышьяк, сурьма, висмут. Атомы этих элементов имеют на внешнем уровне по пять электронов из которых неспарены только три р-электрона. Такому состоянию соответствует степень окисления элементов —3, например в гидридах ЭНд. При возбуждении атомов происходит разъединение -электронов и один из них переходит на -подуровень (за исключением атомов азота, не имеющих внешних -подуровней). Валентных электронов становится пять, они находятся в состоянии 5 -возбуждения, которому соответствует степень окисления элементов в соединениях +5. [c.232]

    Элементы ПА-группы. Общая электронная конфигурация, электроотрицательность элементов, характерная степень окисления. Простые вещества, их восстановительные свойства. Взаимодействие с кислородом, водородом, азотом, галогенами, серой, водой. Распространение в природе и применение. [c.169]

    Вертикальные столбцы называются группами тов. Каждая группа делится на две подгруппы (главную и побочную). Подгруппа-это совокупность элементов, являющихся безусловными химическими аналогами часто элементы подгруппы обладают высшей степенью окисления, отвечающей номеру группы. Например, элементам подгрупп бериллия и цинка (главная и побочная подгруппы II группы) отвечает высшая степень окисления (-ЬII), элементам подгруппы азота и ванадия (V группа)-высшая степень окисления (Ч-У). [c.34]

    Высшая степень окисления за редким исключением отвечает номеру группы, к которой относится данный элемент. Так, у элемента V группы азота высшая степень окисления равна пяти у элементов УП группы хлора и марганца высшая степень окисления равна семи, а у элементов Vni группы ксенона и осмия — восьми и т. д. [c.79]

    СКАНДИЙ (S andium, от названия Скандинавия) S — химический элемент П1 группы 4-го периода периодической системы элементов Д. И. Менделеева, п. н. 21, ат. м. 44,9559. С. имеет один стабильный изотоп, известны 10 радиоактивных изотопов. Существование С. было предсказано Д. И. Менделеевым в 1870 г. Он подробно описал свойства С. и условно назвал его экабором. В 1879 г. С. был открыт шведским ученым Нильсоном в минерале гадолините, впервые найденном в Скандинавии. Содержится С. во многих минералах как примесь. С.— серебристый металл с характерным желтым отливом, т. пл. 1539° С. С. химически активен, при обычных условиях реагирует с кислородом, а при нагревании с водородом, азотом, углеродом, кремнием и т. п. растворяется в минеральных кислотах в соединениях С. проявляет степень окисления +3. С. извле-каЕот при переработке уранового, вольфрамового, оловянного сырья, также из отходов производства чугуна. С. применяют в виде сплавов для изготовления ферритов с малой индукцией (лля быстродействующих вычисл тельыых машин), [c.229]

    Однако ббльшая электроотрицательность фтора по сравнению с кислородом достаточна для того, чтобы сделать НР более сильной кислотой, чем вода, а вода является в свою очередь более сильной кислотой, чем аммиак. Аммиак в действительности ведет себя совсем не как кислота, а как основание, так как тенденция азота поделить с другим атомом свою лишнюю пару электронов достаточно сильна для того, чтобы дать возможность аммиаку в водном растворе отобрать у некоторых молекул воды водородный ион . У фосфора в фосфине также имеется стремление поделить свои электроны, но в связи с большим размером иона фосфора действующие здесь силы настолько слабы, что фосфин в водном растворе не проявляет своих основных свойств в заметной степени. Однако известны соединения фосфония эти соли разлагаются в воде, давая кислоту и фосфин. Более тяжелые элементы группы азота в периодической системе ие образуют соединений такого типа. [c.422]


    Химические свойства элементов V группы также изменяются закономерно азот н фосфор являются типичными неметаллами мышьяк и сурьма — амфотерные элементы с преобладанием (в большей степени у мышьяка и в меньшей у сурьмы) кислотных свойств над основными висмут — металл, у которого наряду с основными свойствами заметно проявляются также и кислотные. [c.79]

    Степени окисления элементов группы азота в различных соединениях [c.435]

    Из табл. 27 следует, что ионизационные потенциалы атомов элементов V группы выше, чем IV группы. Это подтверждает существующую закономерность усиления неметаллических свойств в периодах слева направо. Азот и фосфор — типичные неметаллы, у мышьяка преобладают неметаллические свойства, у сурьмы в равной мере выражены металлические и неметаллические свойства, у висмута преобладают металлические свойства. При обычных условиях азот инертен, так как энергия тройной связи в его молекуле N = N велика (941,4 кДж/моль). При высоких температурах азот вступает в реакцию со многими металлами и неметаллами, образуя нитриды. Соединения азота со степенью окисления +5 являются сильными окислителями, например HNOa и ее соли. [c.232]

    Общие сведения. Азот, фосфор, мышьяк, сурьма — элементы неметаллического характера. Тенденция к образованию соединений с отрицательной степенью окисления выражена значительно слабее, чем у элементов VIA группы. При обычных условиях все элементы (кроме азота) — твердые вещества. В газовой и жидкой фазах кратные связи характерны только для молекулы N2 (N = N). [c.435]

    Основные механизмы выведения тяжелых металлов из атмосферы -вымывание с атмосферньп<и осадками и осаждение иа подстилающую поверхность В осадках эти элементы присутствуют в растворимой (соли, комплексные ионы) и малорастворимой формах. Соединения ртуги в атмосферных осадках классифицируются на две фуппы Первая группа п]эедставлена ее элементной формой и органическими соединениями (например, Hg( Hз)2), а вторая - неорганическими производными (например, Hg2 l2). Основное количество ртути в осадках содержится в виде металлорганических соединений. Следует заметить, что в атмосферных осадках, как правило, преобладают водорастворимые формы тяжелых металлов, что, вероятно, обусловлено наличием в атмосфере кислых оксидов серы и азота, способствующих образованию растворимых соединений. По степени обогащения атмосферных осадков металлы располагаются в следующем порядке 7п > РЬ > Сё > N1 В работе [197] показано, что средние уровни свинца в осадках составляют 12 мкг/л, адя сельских районов (не подверженных урбанизации) 0,09 мкг/л для полярных областей и акваторий океанов 44 мкг/л для урбанизированных районов. [c.105]

    Например, элемент-неметалл азот (V группа) может иметь следующие степени окисления  [c.114]

    Физические и химические свойства элементов подгруппы азота изменяются с увеличением порядкового номера в той же последовательности, которая наблюдалась в ранее рассмотренных группах. Но так как неметаллические свойства выражены у азота слабее, чем у кислорода и тем более фтора, то ослабление этих свойств при переходе к следующим элементам влечет за собой появление и нарастание металлических свойств. Последние заметны уже у мышьяка, сурьма приблизительно в равной степени [c.393]

    Элементы азот N, фосфор Р, мышьяк As, сурьма Sb и висмут Bi составляют VA группу Периодической системы. Валентный уровень атомон отвечает электронной форму.ме ns np . Азот—третий по электроотрицательности неметал.1 (ш)сле фтора и кислорода) судя по электроотрицательности, фосфор и мышьяк — неметаллы, сурьма — типичне>1Й амфотерный элемент, а у висмута иреобладгют металлические свойства. Элементы VA группы образуют соединения и степенях окисления от (-III) до (+V), характерные степени окисления ( П1) и ( + V). [c.206]

    С утяжелением остатков практически все основные гетероатомные элементы концентрируются в высокомолекулярной части их. При исследовании структуры нефтяных остатков, выделяя высокомолекулярные компоненты последовательным растворением в низкомолекулярных растворителях с высаждением различных фракций асфальтенов и смол, установили, что в выделенных концентратах находится значительная часть гетероатомных элементов (1.15). При последовательном растворении остатка в гептане, пентане, бутане и пропане в наибольшей степени удаляется ванадий, затем никель, азот. Удаление серы практически прямо пропорционально удалению наиболее тяжелых компонентов. По степени удаления того или иного элемента можно косвенно оценить, в каких группах компонентов они содержатся (табл. 1.11, рис. 1.16). [c.41]

    Атомы подгруппы азота имеют во внещнем электронном слое по пять электронов (табл. 20). Естественно ожидать у них стремление к заполнению внешних орбиталей до восьмиэлектронного слоя. Однако это стремление должно проявляться менее резко, чем у соответствующих элементов главных подгрупп VI и VII групп, которым до восьмиэлектронной структуры во внешнем слое недостает меньшего числа электронов. Это стремление должно также уменьшаться в подгруппе от азота к висмуту. Отрыв электронов от нейтральных атомов элементов V группы будет происходить легче, чем у элементов VI и VII групп, что обусловлено ростом радиусов атомов рассматриваемых элементов. Элементы подгруппы азота в соединениях проявляют степень окисления от —3 до +5. Однако наиболее характерными [c.306]

    Сера соединяется непосредственно почти со всеми химически активными элементами. Не соединяется сера лишь с двумя неметаллами, близкими к ней по степени электроотрицательности последним неметаллом VII группы — йодом и первым неметаллом V группы — азотом, и с двумя наиболее благородными металлами платиной и золотом. Тем более примечательно, что с их соседями в ряду напряжений — ртутью, медью и серебром — сера соединяется непосредственно, даже без нагревания, а лишь при простом соприкосновении с ними, тогда как с кислородом серебро вообще не соединяется, а ртуть и медь соединяются лишь при нагревании. [c.371]

    По сравнению с другими группами перфторалкильных соединений перфторалкильные соединения элементов V группы (азота, фосфора, мышьяка и сурьмы) изучены значительно лучше. В известной степени это объясняется их доступностью, особенно производных фосфора и мышьяка. Это дает возможность достаточно полно проследить общее направление изменений свойств перфторалкильных соединений элементов V группы и сравнить эти соединения со многими их алкильными аналогами. Чтобы облегчить такое сравнение, перфторалкильные соединения систематизированы здесь по различным типам соединений, а не по элементам этой группы. [c.48]

    Сравнивая число непарных электронов (а именно они могут участвовать в образовании химических связей) у элементов одной группы, казалось бы, наблюдаем полную аналогию. Однако при химическом взаимодействии атомы элементов третьего периода проявляют, а второго не проявляют валентность, равную номеру группы (степень окисления азота, правда, может достигать -4-4 и +5. но тому есть свое объяснение). [c.39]

    Атомы элементов главной подгруппы IV группы содержат во внешней электронной оболочке четыре электрона. Тенденция к отдаче электронов у свободных атомов углерода и его аналогов ныражена слабее, чем у соседей слева по периоду, а тенденция к приему электронов — слабее, чем у соседей справа. Вместе с тем обе эти тенденции выражены приблизительно в равной степени. Поэтому, если можно говорить о том, что атомам галогенов, кислорода или азота присущи электроотрицательные свойства, а атоллам щелочных и щелочноземельных ме- [c.92]

    Атомы элемента V группы азота в соединениях IINO3, NO2, HNO2, N0, N2O, NHg проявляют соответственно степени окисления +5, +4, +3, -f 2, +1, —3. Высшая положительная степень окисления элементов V группы равна +5. [c.57]

    Данные эти показывают, что атомы элементов подгруппы азота на внешнем слое содержат пять электронов. Рассматриваемая группа, в основном, имеет металлоидный характер. Но металлоидность у элементов подгруппы азота выражена слабее, чем у элементов подгруппы кислорода (имеюших на. внешнем слое атома шесть электронов), и в еще более слабой степени, че у элементов группы галогенов (имеющих на внешнем слое атома семь электронов). [c.261]

    Как и для элементов IV группы, наблюдается существенное различие между первым элементом группы и остальными. Оно проявляется в неспособности более тяжелых элементов образовывать кратные связи ММ (М—Р, As, Sb). Так, фосфор, предпочитает образовывать три о-связи, а не одну а- и две я-связи (как в молекуле Кг). Кроме того, фосфор, мышьяк, сурьма и висмут отличаются от азота тем, что их d-орбитали энергетически доступны использование -орбиталей может приводить к увеличению валентности этих элементов до пяти или шести. Конечно, полное включение 3 rf-орбиталей в схему образования -связей, скажем, P I5, является упрощением, но оно оправдано в рамках этой книги. Читатели, интересующиеся этим вопросом, могут обратиться к недавнему обзору Митчела [14], в котором обсуждается роль rf-орбиталей в образовании связей элементами второго и третьего периодов, и к двум статьям (Раук и др. [15] Хофман и др. [16], в которых получены молекулярные орбитали гипотетической молекулы РН5 и обсуждается степень участия Зс -орбитали в связывающих орбиталях. В молекулах типа PO I3 удобно рас-Таблица 10.13. Стереохимия элементов группы VB [c.170]

    Простые вещества элементов 1ПБ группы имеют металлический характер и обладают высокой реакционной способностью. При обычных условиях они окисляются на воздухе, образуя оксиды элементов в устойчивой степени окисления (ЗсгОз, ЬагОз, СеОг, ТЬОг и др.) некоторые металлы при сгорании в кислороде дают оксиды более сложного состава, например РГбОц, 11)407, (иг и )08. Взаимодействие с галогенами, водородом, серой, азотом, фосфором, углеродом и кремнием протекает достаточно энергично. [c.231]

    У первых р-элементов периода имеет место нарастание числа неспаренных р-электронов, достигая максимума у азота и фосфора, затем их число уменьшается. Это сказывается на способности атомов участвовать в образовании химической связи. Обш,ее число валентных электронов соответствует номеру группы, в которой расположен элемент, н высшей положительной степени окисления. Так, например, в атомах элемерлов V группы число валентных электронов равно 5, высшая положительная степень окисления составляет +5. [c.96]

    Изотоп нильсборий-261 был получен при бомбардировке ядра америция-243 ядрами неона-22, а изотоп ннльсбо-рий-260 — при бомбардировке ядра калифорния-249 ядрами азота-15 (второй продукт — нейтроны). Составьте уравнения этих ядерных реакций. Рассмотрите возможную электронную формулу ато а нильсбория и обоснуйте проявление им максимальной (для элементов VB группы) степени окисления. Будет ли высший хлорид нильсбория более или менее летучим, чем высшие хлориды ниобия и тантала  [c.135]


Смотреть страницы где упоминается термин Степень элементов группы азота: [c.290]    [c.306]    [c.220]    [c.244]    [c.105]    [c.58]    [c.203]    [c.200]    [c.159]    [c.16]    [c.133]   
Современная общая химия Том 3 (1975) -- [ c.2 , c.434 , c.436 ]

Современная общая химия (1975) -- [ c.2 , c.434 , c.436 ]




ПОИСК





Смотрите так же термины и статьи:

Азот-элемент

Элемент группы

Элементы группы азота



© 2025 chem21.info Реклама на сайте