Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смесь газообразных реагента и продукта реакции

    Для наглядности представим себе, что при осуществлении реакции (6.34) и (6.35) вещество Аь насыпанное в лодочку, помещено в трубку, через которую пропускается или инертный газ-носитель для удаления газообразного продукта реакции в первом случае, или газовая смесь, содержащая газообразный реагент, во втором. Скорость и состав газа сохраняются постоянными, вследствие чего и скорость удаления (поступления) газообразного реагента от поверхности порошка остается постоянной. [c.174]


    Галогеноангидриды карбоновых кислот. Галогеноангидриды, продукты замещения гидроксильного остатка галогеном, образуются при взаимодействии с кислотами галогенопроизводных фосфора (например, хлорпроизводных) или хлористого тионила последний удобен тем, что, кроме галогеноангидрида, дает только газообразные продукты реакции. При действии хлористого тионила (или других галогенирующих реагентов) сначала образуется неустойчивый сме- [c.161]

    Для объяснения выявленной закономерности можно установить взаимосвязь наблюдаемого явления с условиями протекания химических реакций в рабочей камере установки. В случае малых скоростей и ламинарных потоков создаются неблагоприятные условия для протекания реакций образования субгалогенидов и взаимодействия их с насыщаемой поверхностью в связи с недостаточным подводом реагентов и удалением продуктов реакции. При больших скоростях потока газовой среды уменьшается время контакта между газообразными и твердыми реагентами, что в конечном итоге приводит к снижению интенсивности диффузионного насыщения. Такое объяснение кинетической особенности процесса согласуется с термодинамическими расчетами. Так, например, в случае алитирования никеля при малых и больших скоростях потока газовая смесь обогащается треххлористым алюминием и термодинамическая вероятность ведущих реакций процесса (1Г) и (32) несколько уменьшается вследствие роста нестандартного термодинамического потенциала, рассчитанного по уравнению изотермы химической реакции. [c.57]

    Как указывалось в гл. III, одна из теорий утверждает, что молекулы, составлявшие примитивную атмос( ру, в основном находились в Еосстановленном состоянии [4]. Поэтому источником углерода был метан (СН4), источником азота — аммиак (NH3), а источником кислорода — вода (НаО). Исходя из предположения, согласно которому одним из возможных источников свободной энергии в добиологических реакциях могла служить энергия электрических разрядов, был разработан план эксперимента со специальной целью проверить истинность гипотезы, по которой из смеси восстановленных газообразных реагентов под действием подведенной энергии в форме электрических разрядов должны образоваться биологически важные соединения [51. Прежде всего был сконструирован аппарат для моделирования явлений, имевших место в примитивной атмосфере. Этот аппарат схематически представлен на фиг. 27. В него вводят газообразную смесь, содержащую метан, аммиак и водород. В нижнем сосуде содержится жидкая вола. В верхнем сосуде (объем 5 л) находятся два вольфрамовых электрода, связанных с трансформаторами Тесла и разделенных промежутком около 10 мм. Во время пропускания искровых разрядов воду в нижней камере нагревают и пары воды проходят через левую соединительную трубку в разрядную камеру далее пары воды вновь конденсируются в холодильнике, находящемся ниже камеры. Таким образом осуществляется циклический процесс, и продукты, образующиеся в разрядной камере, попадают в волную фазу. В то же время и сама вода принимает участие в процессе в качестве одного из реагентов. Можно видеть, что в таком аппарате моделируются процессы синтеза, просходившие в верхних слоях атмосферы, а также то, как продукты, образовав-шнеся в газовой фазе, смывались дождями в океаны. Конструкция аппарата, представленного на фиг. 27, позволяет летучим продуктам многократно проходить через разрядный промежуток. [c.152]


    Химические процессы, сопровождаемые диффузией, обычно проходят с участием химических реакций, при которых образуются новые вещества. Чтобы попасть в место протекания реакции, реагенты должны преодолеть диффузионное сопротивление, а чтобы реакция продолжалась, продукты реакции должны диффундировать в окружающую среду. Если такие стадии протекают последовательно, то их можно рассматривать раздельно и складывать ряд сопротивлений, находя общее сопротивление, оказываемое суммарной движущей силе. Такая картина, например, наблюдается в случае гетерогенной реакции, при которой диоксид серы взаимодействует с кислородом на поверхности твердого катализатора, в результате чего образуется триоксид серы. Газообразные кислород и диоксид серы химически не взаимодействуют до тех пор, пока они не достигнут поверхности твердого катализатора однако на их концентрациях в месте протекания реакции могут сказываться сопротивление диффузии через газовую смесь и сопротивление диффузии продуктов реакции в направлении от катализатора. Само наличие реакции не воздействует на диффузионные сопротивления, которые можно определять способами, описанными ранее. [c.334]

    Реакция изучалась аналогично алкилированию ароматических углеводородов (см. главу вторую) газообразными олефинами в приборе, представленном на рис. 12, и жидкими олефинами в приборе, представленном на рис. 13. В случае алкилирования фенолов после завершения реакции продукты обрабатывались водой с целью удаления катализатора, затем 5—10%-ным раствором щелочи до полного отделения фенольных соединений от эфирных (пока капля раствора, нанесенная на часовое стекло не давала мути с соляной кислотой), смесь обрабатывалась эфиром. Эфирный экстракт отделялся от щелочного, сушился хлористым кальцием и перегонялся. Из щелочного слоя путем обработки соляной кислотой выделялись алкилфенолы, сушились и фракционировались. При алкилировании алкилфениловых эфиров реакционная масса разбавлялась водой, нейтрализовалась содовым раствором, сушилась и перегонялась. Реакция изучалась при различных молярных отношениях реагентов, катализатора и температуре. В результате было показано, что алкилирование фенолов и алкил- [c.167]

    В реактор 1 подаются реагенты и катализатор. Тепло реакции используется для генерирования водяного пара в парогенераторе 7. Зто существенно улучшает экономические показатели процесса. Алкилат поступает в реактор переалкилирования 2, туда же подаются рециркулирующие полиалкилбензолы. Смесь находится в реакторе в течение времени, необходимого для достижения равновесия. Выходящий из реактора 2 продукт освобождается от газообразных компонентов в испарителе 3 за счет снижения давления и далее направляется на промывку водой. Пары через конденсатор 4 и сепаратор 5 поступают в абсорбер 6, где промываются бензолом. Жидкая фаза из абсорбера возвращается в реактор, а газ отдувается и передается в топливную сеть. Ввиду меньшего расхода хлорида алюминия в данном процессе понижена коррозионность реакционных сред, и аппараты изготовлены из углеродистой стали, покрытой торкрет-бетоном. [c.402]

    Более полная информация о способах реализации процесса может, быть получена при анализе свойств смеси и отдельных составляющих ее смесей меньшей размерности. Рассмотрим качественно это применительно к стадии выделения целевых продуктов. Обычно смесь, поступающая на разделение, является продуктом химического превращения (это особенно характерно для химических производств) и наряду с целевыми компонентами может содержать исходные реагенты и побочные продукты. При невысокой степени превращения исходные реагенты желательно выделить и возвратить на стадию превращения. Они, таким образом, становятся также целевыми продуктами стадии выделения. Что касается побочных продуктов реакций, то последние, особенно при больших мощностях производства, также могут представлять товарную ценность. Даже не будучи таковыми, они часто должны подвергаться последующей обработке исходя из требований охраны окружающей среды. Следовательно, смесь, поступающая на разделение, может содержать различные по агрегатному состоянию (газообразные или жидкие), по важности (целевые или побочные) и по требованиям на качество продукты. Однако все они составляют единую смесь, свойства которой определяются как свойствами отдельных компонентов, так и степенью их взаимодей-отвия. При наличии неконденсирующихся компонентов (критическая температура которых ниже температуры смеси) возникает вопрос о целесообразности изменения условий или выделения газовой и жидкой фаз на первом этапе разделения. [c.96]


    Обычно смесь, поступающая на разделение, является продуктом химического превращения (это особенно характерно для химических производств) и наряду с целевыми компонентами может содержать исходные реагенты и побочные продукты. При невысокой степени превращения исходные реагенты желательно выделить и возвратить на стадию превращения. Они, таким образом, становятся также целевыми продуктами стадии вьщеления. Что касается побочных продуктов реакций, то последние, особенно при больших мощностях производства, также могут представлять товарную ценность. Даже не будучи таковыми, они часто должны подвергаться последующей обработке исходя из фебований охраны окружающей среды. Следовательно, смесь, поступающая на разделение, может содержать продукты, различные по афегатному состоянию (газообразные или жидкие), [c.38]

    Взаимодействие между А (Е1)з и перекисью бензоила сопровождается выделением газообразных продуктов. Хроматографический анализ газа показал, что он состоит из этана, этилена и бутана. Далее реакционную смесь разлагали водой. При этом выделялся этан в количестве, отвечающем двум этильным группам исходного алюминийорганического соединения двуокись углерода ни в одной порции газа не была обнаружена. Водный и углеводородный слой разделяли и анализировали на содержание бензойной кислоты, перекисей и сложных эфиров. В осадке определяли содержание бензоатных групп. Главным продуктом превращения перекиси бензоила при соотношении реагентов 2 1 является ди-этилалюминийбензоат, выделенный в виде диоксиалюминийбеи-зоата. Количество сложных эфиров в продуктах реакции составляло 2%. Бензойная кислота ни в одном случае не была обнаружена. [c.257]

    Окись хлора является одним из наиболее энергичных реагентов и бурно реагирует с органическими веществами. При соприкосновении с каучуком или скипидаром газообразная окись хлора взрывает. Взаимодействие окиси хлора с органическими веществами в препаративных целях мало изучалось. В 1900 г. Шолль и Нёррвз исследовали действие окиси хлора на избыток бензола при 0° в темноте. Оказалось, что реакция идет сложно. Основным продуктом реакции является смесь а- и р-гексахлор-циклогексанов, но, кроме того, в значительных количествах образуются фенол, 2,4,6-трихлорфенол и вещество суммарного состава eHe liO, имеющее окисный характер. Гольдшмидт с [c.21]

    Вследствие выделения газообразного продукта реакция (III-14) становится необратимой. Это, возможно, служит причиной легкости образования полимеров высокого молекулярного веса. Недавно две группы исследователей описали полимеризацию диацетилепов с бисциклопентадиенонами [19, 21, 27] [например, реакция (III-15)]. Смесь реагентов нагревали в запаянной трубке при 300° С в течение 50 ч в качестве растворителя использовался толуол. Были получены относительно высокомолекулярные продукты [27]. Эти полимеры отличаются тем, что имеют температуры разложения на воздухе 470—550° С [27]. Другие примеры приведены в табл. П1-1 [c.121]

    Впервые термодинамический вывод закона действующих масс для газообразных и растворимых веществ был дан Вант-Гоффом в 1885 г. при изучении протекания реакции в сосуде, получившем название ящика Вант-Гоффа. Ящик Вант-Гоффа можно представить себе как непроницаемый сосуд, в котором содержится равновесная смесь газов. В этот ящик бесконечно малыми объемами вводятся газовые реагенты из него также отводятся продукты реакций с помощью цилиндров, снабженных непроницаемыми поршнями и сообщающихся с ящиком полунепроницаемыми перепонками, как показано на рис. (Н-1). [c.19]

    Фирма Monsanto разработала процесс гомогенного высокотемпературного алкилирования бензола этиленом. Характерной особенностью процесса является подача очень малого количества катализатора и отсутствие рециркулирующего катализаторного комплекса, проведение процесса при температуре выше 150 °С. Катализатор используется однократно и выводится из системы. Наряду с реактором алкилирования имеется отдельный реактор переалкилирования. Принципиальная технологическая схема процесса приведена на рис. 1.21. В реактор 1 подаются реагенты и катализатор. Тепло реакции используется для генерации водяного пара в парогенераторе 7. Это существенно улучшает экономику процесса. Алкилат поступает в реактор переалкилирования, туда же подаются рециркулирующие полиалкилбеизолы. Смесь находится в реакторе время, необходимое для достижения равновесия. Выходящий из реактора 2 продукт освобождается от газообразных компонентов в испарителе 3 за счет снижения давления и далее направляется на промывку пары через конденсатор 4 и сепаратор 5 поступают в адсорбер 6, где промываются бензолом жидкая фаза из абсорбера возвращается в реактор, а газ отдувается. Аппараты изготовлены из углеродистой стали, покрытой торкретбетоном с целью защиты от коррозии. [c.84]

    Такие реакции Различие энтальпии продуктов и реагентов не может увеличивают быть единственным фактором, определяющим воз- беспорядок системы можность протекания реакции. В этом случае необходимы дополнительные факторы. Приведенные выще четыре примера физических и химических превращений имеют одно общее свойство. Растворение хлорида калия сопровождается наруще-нием регулярности кристаллической решетки — возникает беспорядочное распределение ионов в растворе. При плавлении льда регулярная сетка водородных связей во льду (см. рис. 4.18) заменяется Примеры жидкими ассоциатами молекул воды в среде жидкой самопроизвольных воды. Когда вода испаряется, ассоциаты из ее моле-превращепий кул заменяются отдельными молекулами, движущимися независимо в газовой среде. (Большое различие между АНпл и ЛЯисп указывает на то, что в жидкой фазе существуют сильные водородные связи). При диссоциации карбоната аммония из 1 моль его образуется 4 моль газообразных продуктов. Когда газы приходят в соприкосновение, они взаимодиффундируют, образуя гомогенную смесь. Систему, состоящую из различных молекул в разных сосудах, следует считать более упорядоченной, чем смесь разных молекул в одном сосуде. [c.231]

    Употреблявшиеся реагенты, выходы и свойства полученных продуктов приведены в табл. 3. Хлористый алюминий и галоидметан, если он при комнатной температуре жидкий, помеш.али в автоклав, который затем закрывали и погружали в смесь ацетона и сухого льда. Галоидметан, если он при комнатной температуре газ, и галоид-этилен вводили в автоклав под давлением. Автоклав помещали в качалку и нагревали. Образующиеся при реакции газообразные соединения выпускали и сжижали в ловушке, охлаждаемой смесью сухого льда и ацетона. Конденсат подвергали фракционированной перегонке. Жидкий и твердый остаток в автоклаве взмучивали с эфиром и встряхивали с соляной кислотой, содержащей куски льда. Эфирный экстракт промывали водой, сушили и фракционировали. [c.302]

    Две турбинные мешалки 13 (см. рис. 3.4) обеспечивают быстрое смешение вводимых реагентов. Частота вращения мешалки может меняться с помощью преобразователя частоты ТПЧ-60, подключетюго к взрывозащищенному электроприводу, от 10 до 220 об/мин. Исходная реакционная смесь, содержащая растворенные в уксусной кислоте /г-ксилол, ацетат кобальта, бромид -натрия и 2% воды, поступает чер ез патрубок 3. Воздух поступает через патрубок 4 в -нижнюю часть реакционной зоны. Необходимое распределение газа в жидкости и быстрое смешение исходных реагентов с рсакционньши продуктами в зоне реакции создаются необходимым числом оборотов мешалок, имеющих оптимальные р азмеры и соответствующую конфигурацию лопастей, установкой отражательных перегородок 2 и отражательных полок 15, а также оптимальным расположением вводных и выводных патрубков жидких и газообразных продуктов. [c.67]

    Следующие полимеры формальдегида получаются из его водного раствора. а-Полиоксиметилен образуется при обработке водных растворов формальдегида твердыми едкими щелочами (N3, К, Са и т.д.). -Полиоксиметилен получается из раствора формальдегида при добавлении концентрированной серной кислоты. у-Лолиоксиметилен осаждается концентрированной серной кислотой из растворов, содержащих метиловый спирт. Наконец, параформальдегид (часто неправильно называемый триоксиметиленом), который является обычным промышленным продуктом, получают в больших количествах выпариванием водных растворов формальдегида в вакууме. Все эти полимеры представляют собой порошки без видимого кристаллического строения (хотя при помощи рентгеноструктурного метода выявляется присутствие нитевидных молекул) они обладают характером гемиколлоидов. Параформальдегид представляет собой смесь полимергомологов со степенью полимеризации в пределах 10—50 степени полимеризации гемиколлоид-ных полиоксиметиленов (а, р и у) лежат в пределах 50—100. При нагревании до 140—160° параформальдегид деполимеризуется без плавления, давая газообразный мономерный формальдегид. Деполимеризация происходит также при более низкой температуре в присутствии определенных реагентов на этом свойстве основывается применение параформальдегида вместо мономолекулярного формальдегида во многих реакциях. [c.671]


Смотреть страницы где упоминается термин Смесь газообразных реагента и продукта реакции: [c.48]    [c.140]    [c.761]    [c.132]    [c.72]    [c.127]   
Смотреть главы в:

Кинетика гетерогенных процессов -> Смесь газообразных реагента и продукта реакции




ПОИСК





Смотрите так же термины и статьи:

Газообразные продукты

Продукты реакции

Реакции в смесях



© 2025 chem21.info Реклама на сайте