Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы анодное оксидирование

    Анодное оксидирование (анодирование) широко применяется для обработки алюминия. Алюминиевое изделие играет роль анода электролизера. Электролитом служит раствор серной, хромовой, борной или щавелевой кислот, катодом может быть металл, не взаимодействующий с раствором электролита, например свинец. На катоде выделяется водород, на аноде происходит образование оксида алюминия AI2O3. Суммарный процесс на аноде можно представить следующим уравнением  [c.423]


    АНОДНОЕ ОКСИДИРОВАНИЕ МЕТАЛЛОВ [c.122]

    Образование на аноде окислов металлов (анодное оксидирование) [c.195]

    Напряжение на электролизере при анодном оксидировании алюминия значительно выше, чем во многих процессах электроосаждения металлов (см. табл. 13.1). Потенциалы выделения водорода из этих растворов на свинцовом катоде не превышают 1 В, падение напряжения в растворах при а = 100—300 A/м невелико. Вследствие высокого омического сопротивления пленок основное падение напряжения сосредоточено на аноде и зависит от толщины и пористости оксида. Этим объясняется значительно более высокое напряжение для процессов анодного оксидирования в электролитах №№ 2—5 в сравнении с электролитом № I. [c.82]

    Анодное оксидирование (анодирование) широко применяется для обработки алюминия. Алюминиевое изделие служит анодом электролизера. Раствором электролита служит раствор серной, хромовой или щавелевой кислот, катодом может быть металл, не взаимодействующий с раствором электролита, например свинец. На катоде выделяется водород, на аноде происходит образование оксида алюми- [c.373]

    Результат анодного действия тока — не только травление и полирование металлов, но и их пассивация. Она заключается в том, что в определенных условиях при сдвиге анодного потенциала в положительную сторону скорость растворения металла, достигнув некоторого предельного значения, может резко уменьшиться. Это явление связано с образованием на поверхности электрода нерастворимых оксидных пленок. Анодное оксидирование (анодирование) применяют для защиты изделий от коррозии, для декоративной отделки их, для создания поверхностного электроизоляционного слоя. [c.218]

    Анодному оксидированию подвергаются металлы с малой электронной проводимостью нх окислов, следовательно, это будут окислы с р-типом проводимости. [c.204]

    Работа 50. Анодное оксидирование металлов [c.237]

    Результаты выявлены особенности механизма синтеза и поликонденсации термореактивных олигомеров различного химического строения на поверхности дисперсного магнитного сплава установлена взаимосвязь структуры модифицированных магнитопластов с эксплуатационными свойствами получены новые данные о влиянии режима анодного оксидирования потенциала и длительности последующего катодного внедрения редкоземельного металла на процесс циклирования лития в разработанных матрицах. [c.124]

    В процессе анодного оксидирования алюминиевый предмет служит анодом электролитической ванны. Электролит обычно представляет собой раствор серной кислоты, иногда с добавлением органических кислот. Анодно-оксидное покрытие, формируемое в процессе электролиза, состоит из плотной части, или барьерного слоя, непосредственно граничащего с металлом, и расположенного поверх него микропористого слоя (рис. 115). [c.128]


    Анодная электрохимическая обработка металлов является эффективным методом получения покрытий с заданными свойствами. С помощью анодног оксидирования можно изменять такие свойства поверхности металлов, как прочность, твердость, износостойкость, термостойкость, электроизоляционные Характеристики, каталитическую активность и др. Анодное оксидирование производится с применением постоянного или переменного тока (50 Гц). Широко применяется анодная обработка алюминия, магния, титана и других металлов в различных электролитах. В настоящее время известны сотни вариантов составов электролитов для анодного оксидирования, и число их непрерывно растет. Основные электролиты и режимы анодного оксидирования металлов приведены в табл. 9.1. [c.309]

    АНОДНОЕ ОКСИДИРОВАНИЕ, см. Электрохимическая обработка металлов. [c.169]

    Электрохим. окисление проводят для получения защитных и декоративных покрытий (см. Оксидирование), при электрохимической обработке металлов, анодном растворении отходов или полупродуктов. Процессы М. о. используют также в химических источниках тока. [c.42]

    Из области промышленной электрохимии систематизированы,- обобщены и представлены в виде справочных таблиц технологические характеристики таких процессов, как электроосаждение, электрополирование и анодное оксидирование металлов. Эти данные могут быть использованы как в производственной, так и в лабораторной практике. Более сложную задачу представляло составление компактной и достаточно полной сводки технологических режимов электросинтеза многочисленных и разнородных органических соединений. [c.7]

    С и с добавками азотисто-кислых солей при 150. .. 600 °С, а также как электролиты химических источников тока. Они весьма перспективны для химической и электрохимической обработки металлов бестокового и анодного оксидирования). [c.369]

    Некоторые цветные металлы, для получения оксидной пленки на их поверхности, подвергают химическому или электрохимическому (анодному) оксидированию. [c.23]

    Исследования в кипящем четыреххлористом углероде привели к интересным наблюдениям при действии этого соединения на алюминий установлен заметный инкубационный период, который в присутствии кислорода или воды еще более удлиняется [78, 79]. В начале реакции коррозия начинается на отдельных точках поверхности, что говорит о зависимости коррозии от состояния поверхности. Попытки определить отношение времени инкубации к состоянию поверхности показали, что толщина окисной пленки и беспористость пленки играют существенную роль. Здесь наблюдается некоторая аналогия с началом коррозии в царапинах и трещинах. Инкубационный период поэтому удлиняется при анодном оксидировании, а еще более — посредством нагрева металла. Исключительно длинный инкубационный период, наблюдающийся при действии кипящего четыреххлористого углерода на алюминиевые сплавы, по-видимому, является следствием образования особого защитного слоя в присутствии легирующих элементов, [c.535]

    Окрашивание бесцветных пленок органическими красителями и неорганическими соединениями по реакции двойного обмена (см. методику, приведенную ниже) не позволяет получить светостойкую окраску, так как красители отлагаются лишь в верхней части пор. В связи с распространением строительных конструкций из сплавов алюминия, эксплуатипуемых и жестких условиях наружной атмосферы, проводят светостойкое окрашивание путем электрохимической обработки переменным током частотой 50 Гц. В катодный период происходит разряд присутствующих в растворе ионов с образованием мелкодисперсных частиц металлов и нерастворимых оксидов — в основном на дне пор. Окрашенные таким образом пленки наполняют растворами солей металлов (например, никеля), которые взаимодействуют с веществом пленки и образуют гидроксиды. Окрашивание непосредственно в процессе анодного оксидирования, происходящее, например, в электролитах № 3 и № 4 (см. табл. 13.1), связывают с включением в растущий оксид [c.83]

    Соединяемые пов-сти подгоняют друг к другу, очищают и(шш) модифицируют их. При С. мн. металлов и пластич. масс на основе полярных полимеров пов-сти обрабатывают струей мелкодисперсного абразивного материала (струйная обрабртка) с послед, обезжириванием, при С. А1 и его сплавов используют травление или анодное оксидирование (см. Электрохимическая обработка металлов). Обезжири- [c.362]

    Наконец, при потенциалах, превышающих равновесный потенциал кислородного электрода, увеличение плотности тока будет происходить в результате окисления воды с выделением газообразного кислорода. Легче всего этот процесс протекает на тех металлах, чьи окисные пленки обладают высокой электронной проводимостью (золото, платина). На анодах нз таких металлов гидроксильные ионы беспрепятственно отдают свои электроны, окисляясь до молекулярного кислорода. Если же окпсные пленки, экранирующие поверхность металла, отличаются низкой электро[щой проводимостью, то анодный процесс направляется не на разложение воды с выделением кислорода, а на увеличение толщины окисной пленки — так называемое анодное оксидирование. При этом анодный потенциал нередко может достигать значений порядка сотен вольт (точнее говоря, таких знач ений достигает падение напряжения в пределах окисной пленки при протекании электрического тока). [c.196]


    Анодное оксидирование может быть изучено на различных металлах, лучше всего обнаруживающих эту способность в растворах, не обладающих заметным воздействием на оксидную пленку. Так, алюминий хорошо оксидируется в кислом боратном буферном растворе, титан — в растворах серной кислоты. Цирконий, ванадий, ниобий — металлы, вообще характеризующиеся высокой коррозионной стойкостью во многих средах, соответственно легко оксидируются в кислых, нейтральных и щелочных растворах. Однако введение, например, фтор-ионов резко замедляет процесс формирования оксидной пленки или даже полностью его исключает вследствие образования в качест- [c.237]

    Оксидные и др. неорг. 3. п. получают оксидированием (см. Анодное оксидирование), хроматированием, силициро-ванием, фосфатированием металлов обработкой их в соотв, р-рах. Эти покрытия обычно наносят перед окраской. [c.206]

    С помощью Э. удается осуществлять р-ции окисления и восстановления с большим выходом и высокой селективностью, к-рые в обычных хим. процессах трудно достижимы. Это позволяет использ. Э. для пром. получения и очистки многих в-в. Так, Э. водных р-ров получают и очищают Си, 2н, Мн, Сё, № и др. металлы (см. Гидроэлектрометаллургия). Э. расплавов получают А1, Mg, Ма, Ы, Са, Ве, Тт и др. металлы, потенциалы выделения к-рых из водных р-ров более отрицательны, чем потенциал выделения водорода (см. Электрохимический ряд напряжений). Произ-во фтора основано на Э. расплавл. смеси КР и НР, хлора — на 3. водных р-ров или расплавов хлоридов. Водород и кислород высокой чистоты получают Э. водных р-ров щелочей. О других применениях Э. см. Электросинтез, Гальванотехника, Анодное оксидирование. Изотопов разделение, Вольтамперометрия, Кулонометрия. [c.699]

    Для конструкторов и проектировщиков электрохимических производств, равно как и для электрохимиков-технологов, большой интерес представит разд. VIII, в котором приведены имеющиеся данные, относящиеся к промышленному электролизу разного назначения. Здесь помещены количественные характеристики, связанные с электролизом хлоридов, т. е. с получением хлора и каустической соды, с процессами электрополировки и анодным оксидированием металлов, а также с процессами получения и электрорафинирования разных металлов. Большое количество данных относится к процессам нанесения гальванических покрытий из чистых металлов и сплавов. [c.7]

    Алюминий стоек в дистиллированной воде даже при температуре кипения. В некоторых случаях вода вначале действует на поверхность металла, особенно если окисная пленка повреждена (например, от истирания металла под водой), однако коррозия, быстро снижается благодаря образующейся пленке. При этом пленке приписывается кристаллическая структура. Образующаяся в воде с температурой выще 70° С у-моногидроокнсь алюминия [8, 10] проявляет повышенную стойкость (установлено [13] в испытаниях оксидированных на воздухе образцов металла при действии на них кислот). Вследствие этого получило распространение мнение, что повышение коррозионной стойкости анодно оксидированного алюминия кипячением в воде также основано на образовании у-моногидроокиси алюминия, в то время как раньше улучшение коррозионной стойкости объясняли закрытием пор из-за набухания пленки. [c.525]


Смотреть страницы где упоминается термин Металлы анодное оксидирование: [c.203]    [c.203]    [c.205]    [c.162]    [c.101]    [c.122]    [c.124]    [c.48]    [c.171]    [c.171]    [c.354]    [c.48]    [c.311]    [c.379]   
Химический энциклопедический словарь (1983) -- [ c.48 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Анодное поведение металлов в пассивном состоянии (2U1). 6. Анодное оксидирование металлов

Работа 50. Анодное оксидирование металлов

Ток анодный

Часть четвертая ЭЛЕКТРОХИМИЧЕСКИЕ И ХИМИЧЕСКИЕ МЕТОДЫ ОКСИДИРОВАНИЯ И ОКРАШИВАНИЯ МЕТАЛЛОВ Анодное оксидирование алюминия и алюминиевых сплавов



© 2025 chem21.info Реклама на сайте