Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические производств

    Основными показателями электрохимических производств являются выход по току, степень использования энергии, расходный коэффициент по энергии, напряжение, приложенное к электролизеру, и др. Большинство вычислений основано на законе Фарадея, согласно которому масса вещества, выделившегося при электролизе, пропорциональна силе тока /, времени электролиза т и электрохимическому эквиваленту этого вещества Э,.,. Масса веществ вычисляется по формуле [c.200]


    Гальванотехника — один из наиболее распространенных видов электрохимического производства, который включает процессы нанесения покрытий в виде металлов и сплавов с целью защиты изделий от коррозии, защитно-декоративной отделки, повыщения сопротивления механическому износу и поверхностной твердости, сообщения антифрикционных свойств, отражательной способности (гальваностегия), а также для изготовления и размножения металлических копий (гальванопластика), [c.332]

    Постоянный электрический ток используют в электрохимических производствах как для процессов разложения веществ, так и для процессов синтеза [9], при этом необходимо соблюдение определенных условий. Например, разложение воды начинается при напряжении [c.78]

    Величины Аф обоих электродов складываются в электродвижущую силу концентрационной поляризации, направленную против приложенной к электролитической ванне разности потенциалов, поэтому последняя должна быть увеличена на э. д. с. концентрационной поляризации, чтобы была получена необходимая для электролиза сила тока. Так как в электрохимических производствах при электролизе применяют токи довольно большой плотности, возникают значительные э.д.с. поляризации, вызванные изменениями концентраций у поверхности электродов. Появление э. д. с. концентрационной поляризации увеличивает расход электрической энергии, поэтому устранение или уменьшение концентрационной поляризации является важной практической проблемой. Одной из основных мер уменьшения концентрационной поляризации является перемешивание растворов. Возникновение концентрационной поляризации снижает [c.610]

    Второй закон электролиза дает прямой метод определения эквивалентов различных элементов. На этом же законе основаны расчеты, связанные с электрохимическими производствами. [c.299]

    В электрохимических производствах каустической соды мощность современных цехов диафрагменного электролиза составляет 200—300 тыс. т в год. Новые хлорные производства размещаются вблизи природных запасов соли, а в переработку направляются в основном рассолы, получаемые подземным растворением соли. [c.17]

    Помимо электролиза водных растворов в электрохимических производствах применяют и электролиз расплавов различных солей. Электролиз расплавленных солей ведут при температуре около 1000 С, причем значительная часть подводимой энергии расходуется на поддержание высокой температуры расплава. Электролиз водных растворов проводят при температуре ниже 100 °С. [c.79]


    Подземный рассол, получаемый в рассольных скважинах, перекачивают из специальных сборников на очистку. Твердую товарную соль хранят на складе соли, где ее растворяют и рассол также подают на очистку. Из цеха электролиза электролитический щелок перекачивают в цех выпарки и в виде 42—50% -ного раствора передают на склад. Влажный хлор из электролизеров поступает в отделение сушки и затем компрессорами перекачивается цехам-потребителям. Водород, являющийся побочным продуктом процесса, после охлаждения водой подается потребителям. Постоянный ток для электролиза подводят к электролизерам с преобразовательной подстанции, расположенной на территории предприятия. Карие. 21.7 приведена схема подобного электрохимического производства. [c.349]

    Открытие М. Фарадеем законов электролиза позволило организовать в конце девятнадцатого века в относительно малых объемах получение каустической соды, алюминия и другие электрохимические производства,в частности получение хлора. [c.13]

    Воздействие электрическим током в электрохимических производствах составляет основу электролитического производства многих химических продуктов. [c.173]

    Курс Технология электрохимических производств , читаемый на соответствующих кафедрах технологических, химико-технологических и политехнических вузов, включает ряд разделов, в которых рассматриваются процессы электролиза водных растворов без выделения и с выделением металлов, электрохимического синтеза неорганических и органических веществ, электролиза расплавов, а также основы производства источников электрической энергии. Естественно, что подробное изложение этих вопросов в книге ограниченного объема невозможно, да и не требуется по учебному плану. Задачей курса является общее ознакомление студентов с процессами превращения химической энергии в электрическую (в производстве химических источников тока) и с возможными путями использования электролиза для получения различных продуктов. [c.7]

    В электрохимических производствах химические процессы происходят под действием постоянного электрического тока на раствор или расплав электролита. Электрохимические процессы широко применяются для производства хлора, щелочей, водорода, кислорода, металлов, неорганических окислителей, а также для получения декоративных и защитных покрытий металлов, для рафинирования металлов и др. [c.78]

    Электрохимическое производство гидроксида натрия и хлора из водного раствора хлорида натрия представляет собой единое комплексное производство, включаюш ее следующ ие процессы  [c.348]

    Рис 21.7. Общая схема электрохимического производства едкого натра, хлора и водорода [c.348]

    Что служит сырьем для электрохимического производства гидроксида натрия, хлора и водорода  [c.355]

    При этом регламентируется значение косинуса фи при снижении этой величины предприятие уплачивает штраф или же заранее устанавливается надбавка на оба тарифа (за присоединение и за использованную электроэнергию). Если установленное (регламентированное значение косинуса фи поддерживается или повышается в установленных пределах, предприятие получает премию или дополнительную скидку с тарифа. В электрохимических производствах, где не менее половины электроэнергии расходуется на тех- [c.189]

    Новый этап в производстве изделий из углерода связан с созданием и началом практического использования турбо- и гидрогенераторов электрической энергии, а также электропривода. Их применение обусловило разработку и выпуск, начиная с семидесятых годов девятнадцатого столетия, угольных щеток, столбов ДЛЯ регуляторов напряжения, электродов для электронагрева и электрохимических производств. [c.11]

    РегОз и его производные (ферриты) широко используют в радиоэлектронике как магнитные материалы, в том числе как активные вещества магнитофонных лент. Благодаря высокой химической стойкости и электропроводности Рез04 служит материалом для изготовления анодов в ряде электрохимических производств. [c.570]

    Одним из первых учебников по прикладной электрохимии в СССР было 1-е издание этой книги, вышедшей под названием Технология электрохимических производств . Книга была написана В. Г. Хомяковым, В. П. Машовцом и Л. Л. Кузьминым и издана в 1949 г. В настоящее время она является библиографической редкостью . [c.7]

    К началу 1941 г. мощность электростанций в СССР возросла в И раз, а выработка электрической энергии — в 25 раз. Это-и явилось основной предпосылкой для создания в СССР мощной электрохимической промышленности. За эти годы возник ряд новых крупных электрохимических производств алюминия, магния, натрия и некоторых других легких и редких металлов, цинка, кадмия марганца, а также водорода, кислорода, перекисных соединений и т. д., получили развитие процессы рафинирования свинца, никеля, серебра и других металлов, были значительно усовершенствованы существовавшие в дореволюционной России процессы рафинирования меди, получения хлора, производство свинцовых аккумуляторов. [c.10]


    Другим серьезным недостатком электрохимического метода является относительно малая скорость некоторых электрохимических процессов, что вызывает необходимость выделения больших производственных площадей и крупных затрат на оборудование. В связи с этим одним из актуальных вопросов в ряде электрохимических производств является укрупнение отдельных аппаратов — [c.11]

    В настоящее время мировое потребление хлора превышает 20 млн. т в год. На его производство затрачивается свыше 60 млрд. кВт-ч электроэнергии. По объему производства хлорная промышленность занимает ведущее место среди крупнотоннажных электрохимических производств. [c.130]

    Интерес к электрохимическому производству гипохлорита натрия усилился в последние годы после появления удобных в эксплуатации полупроводниковых выпрямителей. В ряде случаев организация производства гипохлорита электрохимическим способом на месте выгоднее использования привозного жидкого хлора. [c.183]

    Прочие электрохимические производства [c.212]

    Экспериментальная проверка этих гипотез и дальнейшее изучение механизма выравнивающего действия добавок, выполненные на кафедре технологии электрохимических производств МХТИ им. Д. И. Менделеева С. С. Кругликовым с сотр. [16], показали, что наиболее обоснованной является диффузионная гипотеза. [c.352]

    В технологии электрохимических производств перенапряжение может оказаться как полезным, так и нежелательным. Например, при электролизе воды (растворов щелочи) для получения водорода катодное перенапряжение приводит к бесполезной затрате электрической работы. Если же цель технологического процесса — выделение металла, но одновременно в качестве побочного процесса может идти выделение водорода, то большое перенапряжение водорода полезно, так как оно, затрудняя выделение водорода, снижает бесполезный расход энергии на этот побочный процесс. Например, при электролизе щелочных растворов комплексных солей цинка на катоде должны разряжаться ионы водорода, а не цинка, так как равновесный потенциал водородного электрода менее отрицателен, чем цинкового. Но ионы гидроксония разряжаются на цинке с большим перенапряжением, т. е. при потенциале, гораздо более отрицательном, чем потенциал цинка. Поэтому из раствора при электролизе выделяется цинк. [c.297]

    Поэтому мы здесь не будем останавливаться на всем многообразии расчетов производственных процессов в химической промышленности. Рассмотрим лишь типовые и наиболее распространенные в промышленной практике материальные и тепловые расчеты производственных процессов, как то а) термическую обработку некоторых видов органического и минерального сырья (газификация и коксование угля, газификация торфа, обжиг железного колчедана, электротермическое получение карбида кальция, ферросилиция и окиси азота), б) каталитические процессы синтеза и окисления аммиака, конверсии окиси углерода и окисления сернистого газа, в) электрохимические производства, г) один из наиболее слолсных физико-химических методов промышленной переработки сырья —сжижение и ректификацию газовых смесей в( частности воздуха). Приведенные расчеты производственных процессов охватывают собой значительную и наиболее сложную и важную часть процессов химической технологии. Освоение этих расчетов дает возможность технологу методически правильно подойти к расчету материального и теплового баланса почти любого химического производства. [c.265]

    В химической промышленности платина применяется для изго-топления коррозиониостойких детален аппаратуры. Платиновые аноды используются в ряде электрохимических производств (производство надсерной кислоты, перхлоратов, перборатов). Широко применяется платина как катализатор, особенно при проведении окислительно-восстановительных реакций. Она представляет собой первый, известный еще с начала XIX века гетерогенный катализатор. В настоящее время платиновые катализаторы применяются в производстве серной и азотной кислот, при очистке водорода от нрнмссей кислорода и в ряде других процессов. Из платины изготовляют нагревательные элементы электрических печей и приборы для измерения температуры (термометры сопротивления и термопары). В высокодисперспом состоянии платина растворяет значительные количества водорода и кислорода. На ее способности растворять водород основано применение платины для изготовления водородного электрода (см. стр. 281). [c.698]

    Большое применение имеют углеграфитовые материалы. Графитовые эле ктроды применяют в больших количествах в электрометаллургии и электрохимических производствах. Графит используют также для изготовления плавильных тиглей, в металлургии, облицовки панн для получения алюминия, в ядерных реакторах (замедлитель нейтронов), в электротехнике (электрощетки в моторах и др.). Современная техника широко использует и другие углеграфитовые материалы. Графитовое волокно, соединенное полимером, о(5разует композиционный материал малой плотности (р 2 г/см ), ио прочности значительно превосходящий сталь. Из этих материалов делают детали самолетов и ракет. [c.366]

    По расходу воды на 1 т продукции химические и нефтехимические производства условно можно подразделить на три группы неводоемкие (до 50 м т), средней водоемкости (50— 100 м /т), большой водоемкости (100—1000 м т). К последним относятся производства химических волокон, пластических масс и синтетических смол, синтетического каучука, ряд электрохимических производств. [c.50]

    Основной. недостаток электрохимических производстввысокий расход электроэнергии. Поэтому в электрохимических производствах особое значение имеет рациональное использование энергии. Критериями рационального использования энергии при электролизе служат выход по току, коэффициент использования энергии и напряжение, приложенное к электролизеру. [c.78]

    Лекция 22, Электрохитлические производства. Основные направления при-менеШ 1я электрохимических производств. Теоретические основы электролиза расворов и расплавов. Электролиз раствора хлорида натрия. [c.283]

    В технологии электрохимических производств большое значение имеют электролиз и химические источники тока (аккумуляторы, электрохимические элементы). Ток протекает через электролитическую ячейку и электроды, равновесие в системе отсутствует и элёкт-родные потенциалы отличаются от равновесных. Отклонение потенциала электрода от равновесного значения при протекании тока через электрод называется перенапряжением. [c.380]

    Среднее специальное химическое образоваяне учащиеся могут получить в средних специальных учебных заведениях на базе девяти классов (продолжительность обучения, как правило, 3 года 8 месяцев) и на базе одиннадцати классов (продолжительность обучения — 2 года 8 месяцев). Приобретаемые квалификации по специальностям техник-механик (химическое, компрессорное и холодильное машиностроение, оборудование химических и нефтеперерабатывающих заводов, оборудование коксохимических заводов) техник-электромеханик (эксплуатация автоматических устройств химических производств) техник-технолог (химическая технология нефти и газа, технология коксохимического производства, технология стекла и изделий из него, технология электрохимических производств, технология электродоч и электроугольных производств, электрохимические покрытия, технология огнеупорных материалов, технология органического синтеза, технология органических красителей и промежуточных продуктов, парфюмерно-синтетическое производство, химическая технология синтетических смол и пластических масс, технология лаков и красок, технология резин, технология синтетического каучука, технология химических реактивов и особо чистых веществ, технология химических волокон, технология неорганических веществ и минеральных удобрений и др.) техник-химик (аналитическая химия, нефтепромысловая химия) техник-плановик (планирование на предприятиях химической промышленности). Срок обучения эгам специальностям после IX класса — 2 года 11 месяцев, после XI класса — 1 год 10 месяцев. [c.201]

    В пособии отражены разделы, которые составляют основное содержание курса теоретической электрохимии. Опыт преподавания этого кур са в Харьковском ордена Ленина политехническом институте им. В. И. Ленина подсказал авторам, что для успешного освоения предмета необходимо понимать и находить взаимосвязь между теоретическими положениями, охватывающими совокупность явлений и закономерностей, имеющих место в равновесных и неравновесных электрохимических системах, и их практической реали-заи.ией Б многообразных технологических процессах электрохимических производств. [c.3]

    Авторы выражают свою искреннюю благодарность коллективу кафедры технологии электрохимических производств Киевского политехнического института и доцентам этой кафедры Г. Г. Вржосеку н Р. В. Медведеву, профессору Черновицкого государственного университета А. И. Лопушанской, проделавшим большую работу по рецензированию пособия, а также профессорам Харьковского государственного университета В. В. Александрову и Д. Н. Грицану за просмотр рукописи и ценные замечания. [c.5]

    Сочетание атомов углерода разных гибридных состояний в единой полимерной структуре порождает множество аморфных форм углерода. Типичным примером аморфного углерода является так называемый стеклоуглерод. В нем беспорядочно связаны между собой структурные фрагменты алмаза, графита и карбина. Его получают термическим разложением некоторых углеродистых веществ. Стеклоуглерод — новый конструкционный материал с уникальными свойствами, не присущими обычным модификациям углерода. Стеклоуглерод тугоплавок (остается в твердом состоянии вплоть до 3700°С), по сравнению с большинством других тугоплавких материалов имеет небольшую плотность (до 1,5 г см ), обладает высокой механической прочностью, электропроводен. Стеклоуглерод весьма устойчив во многих агрессивных средах (расплавленных щелочах и солях, кислотах, окислителях и др.). Изделия из стеклоуглерода самой различной формы (трубки, цилиндры, стаканы и пр.) получают при непосредственном термическом разложении исходных углеродистых веществ, в соответствующих формах или прессованием стеклоуглерода. Уникальные свойства стеклоуглерода позволяют использовать его в атомной энергетике, электрохимических производствах, для изготовления аппаратуры для особо агрессивных сред. Стекловидное углеродистое волокно, обладая низким удельным весом, высокой прочностью на разрыв и повышенной термостойкостью, может найти применение в космонавтике, авиации и других областях. [c.450]


Библиография для Электрохимические производств: [c.398]    [c.541]    [c.541]   
Смотреть страницы где упоминается термин Электрохимические производств: [c.319]    [c.207]    [c.207]    [c.396]    [c.395]    [c.578]    [c.63]    [c.329]    [c.202]    [c.2]   
Неорганическая химия (1950) -- [ c.112 ]




ПОИСК







© 2025 chem21.info Реклама на сайте