Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо определение степени окисления

    Для определения железа существует ряд колориметрических методов, позволяющих определить железо в степени окисления - - 2 и +3. Наиболее распространены методы определения железа (HIJ роданидом или сульфосалициловой кислотой и железа (И) а,а -дипиридином или о-фенантролином. Выбор метода определяется наличием и влиянием сопутствующих элементов. [c.488]


    Составление уравнений окислительно-восстановительных реакций легче провести в несколько стадий 1) установление формул исходных веществ и продуктов реакции 2) определение степени окисления элементов в исходных веществах и продуктах реакции 3) определение числа электронов, отдаваемых восстановителем и принимаемых окислителем и коэффициентов при восстановителях и окислителях 4) определение коэффициентов, при всех исходных веществах и продуктах реакции исходя из баланса атомов в левой и правой частях уравнения. Например, составим уравнение реакции окисления сульфата железа (II) перманганатом калия в кислой среде. [c.181]

    Применение окислителей. Существует большой выбор соединений, применяемых в качестве окислителей перманганат калия, хромовый ангидрид и хромовая смесь, азотная кислота, двуокись свинца и двуокись селена, тетраацетат свинца, перекись водорода, хлорное железо и многие другие. Направление и интенсивность действия окислителя на органические соединения зависят от характера окисляемого вещества, природы окислителя, температуры, pH среды и т. д. Так, например, при окислении анилина хромовой кислотой образуется хинон, перманганатом калия в кислой среде — анилиновый черный, перманганатом калия в нейтральной или щелочной среде — азобензол и нитробензол. Окисление проводится в большинстве случаев в водной или уксуснокислой среде. При определении коэффициентов в уравнениях окислительно-восстановительных реакций удобно пользоваться расчетной схемой, основанной на формальном представлении о степени окисления атомов, входящих в состав соединения. [c.129]

    Многочисленны для элементов триады железа анионные комплексы. Амфотерность гидроксидов железа и в определенной мере кобальта предопределяет возможность образования гидроксокомплексов, что особенно характерно для степени окисления +3. Так, при растворении гидроксидов в избытке щелочи образуются октаэдрические комплексы [Э(0Н)в1 +. Среди анионных комплексов очень распространены ацидокомплексы. Для элементов триады [c.410]

    Иногда для маскирования используют о к и с л ит е л ь и о - восстановительные реакции. Мешающий элемент при этом переводят в другую степень окисления. Примерами могут служить комплексонометрические титрования циркония (IV) или тория (IV) в присутствии ионов железа (III). Титрования проводят при pH 1,5—2, и лоны железа (III) в таких условиях мешают определениям. Мешающее влияние устраняют восстановлением железа аскорбиновой кислотой до железа (II). Количественные расчеты здесь затруднены в связи с отсутствием достоверных данных по константам устойчивости комплексонатов и гидроксокомплексов циркония (IV) и тория (IV). Однако из рис. 45 можно сделать качественную оценку видно, что. при pH 2 логарифм реальной константы устойчивости комплексоната железа (И) меньше единицы. [c.237]


    Закон постоянных отношений, или постоянства состава, открытый работавшим в Испании французом Жозефом Луи Прустом (1755—1862), утвердился в полемике с французским химиком Клодом Луи Бертолле (1748—1822). Последний считал, что направление химической реакции, т. е. состав ее продуктов, зависит не только от природы взаимодействующих веществ, но и от их относительных количеств. Абсолютизируя результаты своих экспериментальных исследований химических равновесий, он утверждал, что все вещества имеют переменный состав, который может меняться непрерывно от одного компонента к другому например, оксиды получаются постепенным насыщением металлов кислородом. В то же время Пруст, используя значительно более точные методы анализа, показал, что на самом деле таких непрершвных переходов нет. На примере карбоната меди, оксидов олова и сурьмы, сульфидов железа в разных степенях окисления, а также других веществ он доказал определенность [c.23]

    Металлы и амальгамы металлов. Наиболее универсальным методом восстановления вещества до определенной степени окисления является, по-видимому, обработка раствора пробы металлом. В качестве восстановителей используют цинк, алюминий, кадмий, серебро, ртуть, медь, никель, висмут, свинец, олово и железо. [c.317]

    Определение степени окисления. Сначала в сырой руде определяют закись, а затем в восстановленной руде определяют сумму железа, присутствующего в виде закиси и в виде металла. Определение производят титрованием раствора, приготовленного без доступа воздуха, как описано выше (см. стр. 22), после чего в результатах, полученных по пунктам 2—4, имеют все данные для вычисления степени окисления руды в обоих состояниях. [c.67]

    Следует учитывать возможное мешающее влияние на определение титана оксидиметрическим титрованием других элементов, характеризующихся переменной степенью окисления. Наиболее частым спутником титана во многих объектах анализа является железо. Простым, эффективным, позволяющим проводить определение титана в материалах, содержащих большие количества железа, является способ, основанный на титровании восстановленного титана раствором солн железа (III) в присутствии роданида калия или аммония в качестве индикатора. [c.125]

    В пределах одной декады переходных элементов (например, от скандия до цинка) максимальная устойчивая степень окисленности элементов сначала возрастает (благодаря увеличению числа -электронов, способных участвовать в образовании химических связей), а затем убывает (вследствие усиления взаимодействия -электронов с ядром по мере увеличения его заряда). Так, максимальная степень окисленности скандия, титана, ванадия, хрома и марганца совпадает с номером группы, тогда как для железа она равна шести, для кобальта, никеля и меди — трем, а для цинка — двум. В соответствии с этим изменяется и устойчивость соединений, отвечающих определенной степени окисленности элемента. Например, оксиды Т10 и Ю, содержащие титан и ванадий в степени окисленности +2, — сильные восстановители, а аналогичные оксиды меди и цинка (СиО и 2пО) восстановительных свойств не проявляют. [c.627]

    Определение степени окисления элементов. Из более обычных элементов в рудах в различных степенях окисления встречаются железо, марганец, кобальт, хром, сурьма и мышьяк. Поэтому, если эти элементы присутствуют, то необходимо определить степень их окисления. [c.38]

    Определение железа (III) основано на предварительном его восстановлении до степени окисления +11 небольшим избытком раствора хлорида олова (II) и последующем титровании стандартным раствором бихромата калия смеси ионов железа (II) и олова (II). Дифференцированное определение Sn++ и Fe++ в растворе при совместном их присутствии проводят титрованием 0,05 н. раствором бихромата калия с компенсационным методом измерения э. д. с. элемента, состоящего из индикаторного Pt-электрода, опущенного в испытуемый раствор, и Няс.КЭ сравнения. [c.65]

    Способ разложения пробы и переведения ее в раствор определяется также целью анализа. Так, по-разному проводят пробоподготовку при элементном и функциональном анализах органических соединений при определении общего содержания какого-то элемента (железо, хром) и его форм в различной степени окисления [железо (II) и (III), хром (III) и (VI)], а также основных компонентов образца и примесей в нем и т. д. [c.70]

    Для платиновых металлов в соединениях характерны практически все степени окисления от О до +8. При этом отмечается тенденция к понижению максимальных степеней окисления в горизонтальных рядах. В вертикальных диадах обычно наблюдается соответствие степеней окисления. Так, элементы первой диады (Ки—Оз) могут проявлять максимальную степень окисления +8 (даже в соединениях первого порядка), элементы второй диады (КЬ—1г) достигают степени окисления +6 (в комплексных соединениях), а палладий и платина имеют типичные степени окисления +2 и +4. Элементы первой диады напоминают по свойствам элементы УПВ-группы — технеций и рений (подобно тому как железо напоминает марганец). Элементы же последней диады проявляют определенное сходство с элементами 1В-группы— серебром и золотом (подобное сходству между никелем и медью). [c.417]


    Высокозарядные ионы металлов способны восстанавливаться ступенчато и давать несколько полярографических волн. Это характерно, например, для анионов хромата, молибдата, вольфрамата, ванадата, катионов железа (П1), кобальта и др. На рис. 25.8 показано восстановление хромат-ионов в растворе гидроксида аммония. Первая волна соответствует восстановлению хромат-ионов до хрома (П1), вторая — переходу хрома(И1) в хром (И). Высшая степень окисления образует волну при более положительном потенциале, чем средняя (или низшая) степень окисления. Это явление иногда используют для устранения влияния посторонних ионов. Так, никель (И восстанавливается легче кобальта (И) и мешает определению последнего. В этом случае можно сначала окислить кобальт до трехвалентного, например пероксидом водорода в аммиачном растворе. Полярогра- [c.502]

    Для определения железа существует ряд методов, позволяющих определять этот элемент в степени окисления (+2) и (+3). Наиболее известными из них являются методы определения железа (III) в виде юданида и соединения Ре (II, III) с сульфосалициловой кислотой. Интерес представляют методы определения железа (II) с 1,10-фенант-ролином, 4,7-дифенил-1-10-фенантролином (батофенантролином), которые в настоящее время получают все большее растпространение. [c.149]

    При общем сходстве свойств рассматриваемых элементов имеется определенная закономерность в их изменении от Ре.к N1. В ряду Ре, Со, N1 вследствие -сжатия уменьшаются радиусы ионов у Ре + г,- = 74, у 00 + г,- = 72, у N 2+ =69 пм. В связи с этим при переходе от Ре + к N1=+ ослабевают основные свойства гидроксидоь Э(0Н)2 и- возрастает устойчивость комплексов, что связано также с заполнением электронами -орбиталей с низкой энергией (гри октаэдрическом окружении лигандами). Рост заряда ядра ведет к более прочной связи электронов с ядром, поэтому для кобальта, и особенно для никеля, степень окисления +3 менее характерна, чем для желеча. Для железа известна степень окисления + 6 (КгРе04), которая не наблюдается у Со и N1. [c.560]

    При взаимодействии раствора К4<[Ре(СН)б] с избытком раствора ионов Fe(HI) образуется нерастворимая берлинская лазурь Ре4Ре(СЫ)б]з- Согласно исследованиям мёссбауэровских спектров (разд. 6.5.4) атомы железа в этом соединении имеют вполне определенные степени окисления, а именно +2 и -)-3. При этом возможность резонанса в пределах молекулы между обоими состояниями окисления Ре2+/Ре +- - -Рез+/Ре2+ исключается. [c.639]

    Использование лазерных (в УФ/вид.-области) источников возбуждения приводит к усилению чувствительности почти на шесть порядков. Лазерное излучение можно настроить достаточно близко к длине волны максимального поглощения. Резонансные рамановские спектры можно получить при концентрации определяемого вещества до 10 М Следует учитывать, однако, возможность деструкции органических соединений под действием коротковолнового лазерного излучения. Кроме того, этим методом можно успешно определять только нефлуоресцирующие вещества (почему ). Наиболее важная область применения КР-спектроскопии на сегодняшний день— анализ биологических образцов, например определение степени окисления железа, связанного в комплекс с гемоглобином в разбавленных водных растворах. В этом случае можно зарегистрировать полосы тетрапиррольного хромофора с миниммь-ным влиянием других КР-сигналов молекулы, которые не усиливаются селективным возбуждением. [c.198]

    То же можно сказать и в отношении объемных определений. Если объемное определение молибдена основано на восстановлении его цинком и титровании стандартньт[ раствором перманганата, то такие вещества, как нитраты, мышьяк, вольфрам, ниобий, которые не восстанавливаются до определенной степени окисления, должны быть предварительно удалены. Такие элементы, как железо, хром, титан, ванадий, надо или удалить или точно определить, чтобы можно было внести на их присутствие соответствующую поправку. [c.28]

    В дейи вительвости, конечно, в образовании ферроцианид-иона участвуют не гипотетические ионы Fe +, а соединения, в которых атом железа имеет степень окисления 2-4-, в частности, в определенных условиях — аквакомплексы двухвалентного железа. [c.111]

    Магнитные методы, так же как и рентгенографические, служат для получения данных о структуре веществ. Эти методы использовались для изучения эффективной дисперсности парамагнитных окислов, таких, как гель СггОз или окись СггОз, нанесенная на АЬОз, а также для определения степени окисления и типа связи в условиях, когда применение других методов затруднительно илн совсем невозмо.жно. Магнитные методы пригодны также для идентификации и определения ферромагнитных компонентов, например карбида железа, в катализаторах синтеза по Фишеру — Тропшу или синтеза аммиака. [c.112]

    В литературе встречается большое количество понятий — синонимов, формально характеризующих валентное состояние атома степень окисления, состояние окисления, зарядность, значность, электрохимическая валентность. Для формальной характеристики валентности мы примем степень окисления. При определении степени окисления предполагают, что степень окисления кислорода равна —2, а водорода +1. Исключением являются перекисные соединения, в которых кислород может иметь различные степени окисления, меньшие чем —2, и гидриды металлов, в которых степень окисления водорода равна —1. Таким образом, степень окисления железа в РегОз равна +3 и +2 в окисле РеО. Степень окисления брома в НВг —1, а серы в НгЗ —2. Степень окисления алюминия в А1С1з определяется по иону хлора, который, являясь кислотным остатком соляной кислоты, имеет степень окисления —1, и поэтому степень окисления алюминия равна +3. В соединении К4рерб степень окисления железа равна +2, так как степень окисления калия +1, а фтора —1. [c.48]

    Во многих катализаторах содержатся металлы, которые могут иметь несколько различных степеней окисления. Например, в исходном катализаторе, содержащем железо, могут присутствовать ионы Ре , Ре + или и те и другие. Есть основания считать, что каталитические свойства определяются именно смесями ионов разного заряда или ионами с изменяющимися степенями окисления. При исследовании катализаторов с переменной степенью окисления следует оценивать возможную валентность их ионов в заданных условиях. Например, в условиях, способствующих протеканию реакции восстановления, оксиды молибдена находятся в низкой степени окисления (4-Н и ниже), а при их использовании в качестве катализаторов окисления при избытке кислорода валентность молибдена близка к максимальной (6-Н). Можно сравнивать каталитические свойства М0О2 и МоОз в отношении определенной реакции, но нужно помнить, что в заданных условиях может существовать только одно из этих соединений. [c.9]

    В полученном солянокислом растворе непосредственно определяют железо. Очень редко приходится иметь дело с мешающими элементами и устранять их влияние. К таким элементам относятся ванадий, молибден и вольфрам, которые иногда могут находиться в незначительном количестве в железной руде. При восстановлении железа двухлористьш оловом эти элементы также восстанавливаются до низших степеней окисления и затем титруются перманганатом. В случае их присутствия анализ усложняется и для определения железа приходится пользоваться другими методами или вводить ряд дополнительных операций, которые подробно рассматриваются в специальных курсах анализа. [c.382]

    Подобный подход продуктивен тогда, когда при образовании с.пожного соединения из бинарных не происходит изменения степени окисления элементов. При этом условии таким образом можно рассмотреть и взаимодействие бинарных соединений с простыми веществами, приводящее к образованию ковалентных комплексов, например карбонилов. Так, металлическое железо при определенных условиях присоединяет СО Fe + 5С0 = [Fe( 0)5], причем в карбониле степень окисления железа остается равной нулю. Во всех остальных случаях взаимодействие бинарного соединения с простым веществом происходит с изменением степени окисления и полученные таким образом продукты не могут рассматриваться как комбинации бинарных соединений. Например, с этих позиций нельзя рассматривать SO2 I2, СаООЬ, H2S2O3 и т.п., поскольку при взаимодействии меняется степень окисления  [c.282]

    Согласно этому определению окислителями могут служить следующие сильноэлектрофильные реагенты азотная кислота, кислород и перекисные соединения (перекись водорода, перекиси металлов, неорганические и органические надкислоты), сера, двуокись селена, хлор, бром, кислородные кислохы галогенов — гипохлориты и гипобромиты, хлорная кислота, йодная кислота, соединения металлов в высших степенях окисления [например, соединения железа (III), двуокись марганца, перманганат калия, хромовая кислота и ее ангидрид, двуокись свинца, тетраацетат свинца]. [c.7]

    Сдвиг реально измеряемого злектродного потенциала железа в положительную сторону по отношению к равновесному говорит о некоторой степени окисления поверхностных атомов. Концентрация Og или соединений типа Н2О2 [ш] оказывает существенное влияние на потенциал железа в нейтральных средах. Так,согласно [И2] в отсутствие воздуха потенциал в таких средах имеет значение порядка -0,53 В, присутствие кислорода смешает его на 130 мВ в положительную сторону, в пассивном состоянии стационарный потенциал железа приближается к 1,0 В. Стационарный потенциал железа зависит от перемешившия раствора и смещается при этом до -0,03 В, что указывает на то, что он является термодинамическим необратюдым стационарным (смешанным) потенциалом [Пй]. Несколько большую определенность имеет стационарный потенциал железа в кислых средах [ПЗ]. Причиной зтого является высокая способность железа адсорбировать водород, что приводит к устойчивому обмену ионов и атомов водорода на поверхности металла. Скачок потенциала в данном случае может определяться и степенью покрытия металла водородом [l 14]. [c.41]

    Полярографированне трехвалентного кобальта в оксалатных растворах [935]. Ионы меди, никеля, железа, цинка восстанавливаются после кобальта н не мешают определению. Марганец, ванадий и хром восстанавливают до низших степеней окисления гидроксиламином. После растворения навески прибавляют раствор едкого натра, 4 ма разбавленной (1 1) уксусной кислоты, 10 МА 2 М раствора ацетата аммония и 50 мл [c.192]

    Маскщювать можно также изменением степени окисления определяемого или мешающего элемента. Например, молибден (VI) и вольфрам (VI) образуют комплексы с ЭДТА, не используемые в титриметрии из-за их малой устойчивости. Высокоселективное определение вольфрама и молибдена основано на титровании суммы всех элементов с предварительным восстановлением молибдена и вольфрама до степени окисления +5 и на титровании всех элементов, кроме молибдена и вольфрама, без их восстановления. В кислой среде при pH 2—3 можно проводить титрование тория, скандия, галлия и других ионов в присутствии железа (Ш), если железо маск1цювать восстановлением до степени окисления +2. [c.79]

    В ряде случаев белки проявляют свою активность при наличии в их составе определенных компонентов, связанных с белковой молекулой. Это можно продемонстрировать на примере уже упоминавшегося тема. Известно большое число комплексов белков с гемом и некоторыми его структурными аналогами, которые объединяются под общим названием гемопротеиды. Центральный атом железа в геме способен образовывать шесть связей. Четыре из них расположены в плоскости гема и соединяют атом железа с четырьмя атомами азота плоской структуры порфиринового кольца, а пятая и шестая находятся перпен.. икулярно по обе стороны плоскости порфиринового цикла и могут давать дополнительные связи с определенными лигандами. Атом железа в геме может менять степень окисления и быть либо в ферроформе Ге , либо в ферриформе и таким образом играть роль переносчика электронов и участвовать в окислительно-восстановительных процессах. Атом кислорода, принимая участие в процессе окисления, может изменить степень окисления железа до Ге (IV) или Ге(У). Если гем связан в комплекс со специфичным белком, это приводит к резкому усилению одной из выполняемых гемом функции. Например, образование комплекса с белком глобином (ге-моглобин) усиливает координирующую способность гема, в особенности способность координировать молекулу О2. Гемоглобин обратимо связывает кислород, который выступает в качестве одного из лигандов, и таким образом служит переносчиком кислорода в многоклеточных организмах. У высших позвоночных гемоглобин находится в специальных красных кровяных клетках (эритроцитах), которые сорбируют кислород в легких и доставляют его ко всем органам и тканям с током крови. [c.16]


Смотреть страницы где упоминается термин Железо определение степени окисления: [c.648]    [c.648]    [c.648]    [c.92]    [c.116]    [c.347]    [c.496]    [c.28]    [c.339]    [c.112]    [c.339]    [c.92]    [c.78]   
Химико-технические методы исследования (0) -- [ c.66 , c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление железа

Окисление железа, степень

Окисления степень



© 2025 chem21.info Реклама на сайте