Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пламя ламинарное

    Имеющуюся пробу (чаще всего в виде жидкости, раствора) вводят в пламя в виде аэрозоля, используя для распыления газ — окислитель. Если пламя ламинарное, то установка состоит из распылителя, смесителя (для смешивания горючего газа и окислителя) и горелки (непрямое распыление). В случае турбулентного пламени распылитель и горелка составляют одно целое (прямое распыление). В зависимости от соотношения горючий газ/окислитель интенсивность излучения пламени проходит через максимум, который необходимо определять в предварительном опыте. Пламя характеризуется особенно высокой стабильностью возбуждения. [c.187]


    Структура диффузионного пламени существенно зависит от сечения потока горючих паров и газов и его скорости. По характеру потока различают ламинарное и турбулентное диффузионное пламя. Ламинарное пламя возникает при малых сечениях потока паров или газов, движущихся с небольшой скоростью (пламя свечи, спички, газа в горелке небольшого диаметра и т. д.). На пожарах при горении всех веществ образуется турбулентное пламя. Оно меньше изучено, и для объяснения этого явления используют положения теории ламинарного пламени. На рис. 6 показано строение ламинарного диффузионного пламени на примере пламени жидкости, [c.31]

    Нормальное гомогенное горение подразделяется на ламинарное и турбулентное. Ламинарное пламя обладает определенной скоростью перемещения относительно неподвижного газа, которая зависит от состава смеси, давления и температуры. Эта нормальная скорость является физико-химической константой смеси. [c.34]

    Именно благодаря выполнению данного соотношения на всей поверхности горения пламя стабилизируется. При ламинарном потоке подходящей смеси распределение скоростей в трубке параболическое  [c.129]

    Идеальная объемная модель турбулентного горения — растянутое ламинарное пламя. Это означает, что характерное время турбулентности должно быть мало по сравнению с продолжительностью реакции. Такое соотношение может иметь место, например, при мелкомасштабной, но интенсивной и однородной по всему объему турбулентности. Для объемной модели полностью применима теорема ламинарного горения с заменой молекулярного коэффициента диффузии на турбулентный Таким образом, для расчета и . можно использовать формулы тепловой теории нормального горения, в которых вместо ол Ро) нужно подставить D = = %jl p >). Следовательно, [c.137]

    Ламинарное пламя состоит из трех зон (рис. 3.36). Первичная реакционная зона обычно имеет ширину не более 1 мм. Температура в ней менее 1000 °С. В основном в этой зоне протекают реакции пиролиза горючего газа. Атомизация незначительна. Для анализа эту зону не используют. [c.145]

    Для различных горючих газовых смесей должны использоваться специально сконструированные горелки. При подаче смеси газов фронт пламени поддерживается над соплом горелки за счет быстрого протока газа через сопло. Фактически скорость протока газа обычно в 2—3 раза превышает скорость распространения пламени. Наиболее распространены в практике атомно-абсорбционного анализа щелевые горелки, позволяющие получать тонкие плоские пламена с большой длиной поглощающего слоя (рис. 3.38). Горелка состоит из двух идентичных заготовок из подходящего сплава. При совмещении этих заготовок в верхней части образуется прямоугольная щель длиной до 12 см, шириной менее 1 мм и высотой около 1 см, обеспечивающая ламинарный поток газа. Обе части горелки стягиваются винтами. Горелку можно поворачивать относительно оси, меняя тем самым длину поглощающего слоя. [c.150]


    Основными характеристиками пламени являются его температура и состав. Чаще всего применяют горючие смеси, предварительно смешанные с окислителем, например кислородом воздуха, горящие в ламинарном режиме. В этом случае фронт пламени поддерживается над срезом горелки быстрым потоком газа. Фронт пламени — это зона, в которой бурно протекают химические реакции. Ламинарное пламя имеет сложную структуру и состоит из нескольких зон. Во внутренней зоне происходят первичные реакции сгорания горючей смеси с образованием различных радикалов (молекул), например С , Сз, ОН, СН и др. Верхняя часть этой зоны имеет вид ярко светящегося конуса. В реагирующих газах нет термодинамического равновесия. Аналитическое значение имеет внешний конус пламени, где происходят реакции полного сгорания образующихся во внутреннем конусе радикалов в кислороде воздуха, диффундирующего из окружающей атмосферы. Этот конус слабо окрашен и практически не имеет собственного фона в видимой области спектра. [c.11]

    Раствор анализируемого вещества распыляется в пламя горелки чаще всего пневматическим способом. Для ламинарных пламен используется система распыления, состоящая из распылителя и распылительной камеры, в которой аэрозоль гомогенизируется, причем крупные капли сепарируются [c.57]

    На рис. 30.20 приведена принципиальная схема пламенного спектрофотометра. Одной из основных частей пламенного фотометра или спектрофотометра являются распылители и горелки. В пламенной фотометрии применяют горелки двух типов нераспыляющие (ламинарные) и распыляющие (турбулентные). Нераспыляющие горелки имеют внешнюю распылительную систему. Образуемые в ней аэрозоли вместе с газом-окислителем подаются в конденсационную камеру — смеситель, где смешиваются с горючим газом и затем попадают в пламя горелки. В комбинированных горелках-распылителях окислителя применяют кислород. Для стабилизации режима горения таких горелок необходимо увеличивать скорость истечения газов из сопла горелки, что делает поток газов турбулентным. В горелках такого типа анализируемый раствор втягивается газом-окислителем в капилляр и затем распыляется в реакционную зону пламени. Существенной частью нераспыляющих горелок являются их наконечники с тонкой защитной сеткой или щелевые, обеспечивающие равномерное горение пламени без проскока его в корпус горелки. [c.695]

    Пламя воспламенившегося топлива распространяется с различной скоростью. На скорость распространения пламени, кроме природы горючего, оказывают влияние такие факторы, как соотношение горючего и воздуха, предварительный нагрев газовоздушной смеси, характер потока смеси (ламинарный, турбулентный или переходный), каталитическое влияние стенок топочного пространства и другие факторы. [c.51]

    Диффузионные пламена уже очень давно и широко используются в промышленпости в силовых установках, цементных печах, мартеновских и плавильных печах, печах для термической обработки, в нефтезаводских факелах, камерах сгорания реактивных двигателей и в других аналогичных областях. Тем не менее изучение литературы показывает, что турбулентным диффузионным пламенам, несмотря на их важное промышленное значение, посвяш ено гораздо меньше научных исследований, чем пламенам предварительно смешанных газов и ламинарным диффузионным пламенам. Однако в цели авторов не входит обсуждение опубликованных работ эта глава посвяш ена рассмотрению данных, необходимых для более глубокого понимания природы и методов получения турбулентных диффузионных пламен, а также ознакомлению с различными явлениями, сопровождаюш,ими пламена этого типа. [c.296]

    Чтобы показать сходство между пламенами предварительно приготовленных смесей и диффузионными пламенами, следует обратиться сначала к рис. 35, где показаны пределы срыва для пламени смесей бутан — воздух с содержанием бутана от 2 до 28% (под отрывом пламени подразумевается отдаление его от сопла с установлением на некотором расстоянии по направлению потока). Смесь, содержащая 28% бутана, выходит далеко за пределы воспламеняемости, и поэтому ее горение можно рассматривать как диффузионное. В качестве характеристического параметра принят градиент скорости на границе пламени этот параметр позволяет установить достаточно четкую корреляцию данных для одного и того же топлива при неизменном давлении в камере сгорания (в данном случае давление окружающей среды). Если принять за основу градиент скорости, фактически существующий на выходе из сопла, вблизи которого находится пламя, то показатели для ламинарного и турбулентного режимов потока укладываются в данном случае на одной линии. Наряду со сходством пламени предварительно приготовленной смеси и диффузионного пламени между ними существуют и различия. Как видно из рис. 35, отрыв турбулентных диффузионных пламен может происходить на пределе стабильности пламени, после чего пламя стабилизируется в зоне сгорания на некотором расстоянии от сопла. Именно такого типа пламена обычно применяются в промышленной практике. Для срыва этого пламени требуется большое дополнительное увеличение скорости. [c.326]

    Дополнительные сведения могут быть получены из данных, представленных на рис. 35 и 36. Следует отметить, что пламя должно удерживаться в некоторой точке или зоне этой зоне необходимо уделить особое внимание. В ламинарном диффузионном пламени смежные порции воздуха и топлива взаимно диффундируют друг в друга вблизи торца горелки. На некотором расстоянии, меньшем, чем расстояние погасания, образуется горючая смесь различных компонентов в виде области, толщина [c.327]

    Высота диффузионного пламени зависит от многих причин и прежде всего от скорости движения горючих паров и газов. Когда скорость движения потока горючих газов ниже критической, т. е. находится в ламинарной области, высота пламени прямо пропорциональна скорости потока (р пс. 15, схемы /, 2, 3). Однако такое пламя образуется только при очень малой площади горения и малых поперечных сечениях потока газов. Это бывает у таких очагов горения, как газовая горелка, свеча и другие. Например, средняя скорость вступления воздуха в пламя свечи не превышает величины 0,5 м сек, что соответствует значениям критерия Рейнольдса 200—300. Эти величины значительно меньше критических [c.56]


    Перечислим наиболее важные для теории горения типы пламен 1) ламинарное пламя в гомогенной газовой смеси. К этому же типу относится пламя при горении летучих взрывчатых веществ  [c.5]

    ЛАМИНАРНОЕ ПЛАМЯ В ГОМОГЕННЫХ ГАЗОВЫХ СМЕСЯХ [c.9]

    Ламинарное пламя в гомогенных смесях имеет исключительно большое значение для теории горения, так как для этого типа пламени влияние химических факторов не затемняется процессами перемешивания исходных компонентов, а поле скоросте свежей смеси может быть весьма простым. [c.9]

    Исследуется несколько различных форм ламинарного гомогенного пламени. Чаще всего используют горелки различных конструкций. На рис. 1 показано пламя на бунзеновской горелке, а на рис. 2 плоское пламя на пористой горелке. В этих случаях пламя неподвижно в лабораторной системе координат, благодаря чему удобно измерять не только скорость горения, но также профили температуры и концентрации (при помощи оптических методов, термопар, отбора газа и т. д.). [c.9]

    ЛАМИНАРНОЕ ДИФФУЗИОННОЕ ПЛАМЯ ЛРИ ГОРЕНИИ ГАЗА ИЛИ ГОРЮЧЕЙ ЖИДКОСТИ [c.42]

    Диффузионные пламена газа (или распыленного твердого, или жидкого горючего) широко применяются в промышленных топках. Изучение диффузионных пламен представляет интерес также при разработке методов борьбы с пожарами в нефтехранилищах и т. п. Хотя в технике в большинстве случаев приходится иметь дело с турбулентными диффузионными пламенами, значительная часть научных работ относится к ламинарным диффузионным пламенам, более доступным для теоретического анализа и лабораторных исследований. Для конденсированных смесей, где размеры частиц компонентов малы, интерес представляют лишь ламинарные диффузионные пламена. [c.42]

    Теперь рассмотри., верхнюю часть нламеип. Вели судить по свечению и температуре зоны горения, то можно прийти к выводу, что в нижней части пламени пары горючего сгорают лишь частично, а основное горение происходит в верхней части пламепи. Поэтому верхнюю часть пламени можно приближенно рассматривать как пламя ламинарной горелки с объемным расходом горючего, равнькм ш. Следовательно, высота верхней части пламени будет пропорциональна т или О, что согласуется с экспериментальными данными. [c.214]

    Ламинарные пламена, которые получаются при спокойном истечении газов, имеют большее распространение в аналитической практике, поэтому остановимся на их. Пламя имеет сложную структуру (рис. 3.21а). Различают три зоны внутренний конус (/), промежуточную зону (2) и внешний конус (3). Поверз ность внутреннего конуса определяется положением фронта горения. Установлено, что стабильное пламя получается при соотношении скоростей истечения газов и горения 1 (2—3). Внутренний конус полый. В-тонком слое толщиной несколько десятых-сотых миллиметра происходит неполное сгорание смеси. Химические реакции, которые протекают в этом слое, являются [c.55]

    На основании измерений и визуальных наблюдений процесс проникания окружающего воздуха в пламя представлен следующим образом. Разрежение, возникающее на выходе конвекционной колонны из резервуара, вызывает приток воздуха. У пламени нет замкнутого контура. Через зоны, в которых горение не происходит, воздух проникает до самой оси пламени. Смешение и горение происходит более или менее глубоко внутри резервуара, о чем свидетельствуют графики изменения концентрации компонен-тов И температуры по оси потока. Таким образом, в отличие от ламинарного диффузионного пламени, здесь нет реакционной зоны, в которую изнутри поступает горючий газ, а снаружи — воздух, где они реагируют между собой, а есть обширная реакционная область, простирающаяся от границы конвекционной колонны до оси пламени. Диаметр реакционной зоны и формирующейся над ней конвекционной колонны равен примерно половине диаметра резервуара. [c.117]

    Во всем предыдущем изложении особое внимание уделялось аэродинамическим характеристикам сгорания в струях. Уместно перейти к рассмотрению типичных опытных данных по процессам сгорания в струе. Особый упор делается на турбулентные диффузионные пламена вследствие важного их промышленного значения. Пламена нредварительно приготовленных топливо-воздушпых смесей и ламинарные диффузионные пламена, являвшиеся предметом многочисленных опубликованных в литературе исследований, будут затрагиваться лишь в порядке сравнения. [c.326]

    В горелках малого диаметра течение паров ламинарное и пламя имеет хорошо очерченные контуры и неизменную форму. Тепло верхнему слою жидкости передается из зоны горения радиацией и через стенки горелки. По мере узеличения диаметра горелки количество тепла, передаваемое через стенки единице объема жидкости (в верхнем слое), резко уменьшается, что ведет к снижению скорости горения. Такое снил<ение скорости происходит до [c.196]

    Рпс. 1. Ламинарное (а, 6) п турбулентное (в, г) пламя в стехиометрн-ческой смеси природного газа с воздухом [50] [c.7]

    Пламя в гомогенной смеси (ламинарное и турбулентное) представляет значительный практический иш-ерес в связи с вопросами безопасности работ в угольных шахтах, а также эксплуатации всевозможных емкостей и магистралей, заполненных горючим газом и летучей жидкостью в связи с исследованием работы некоторых типов газовых горелок и т. д. [c.9]

    Еш е два фактора заслуживают того, чтобы быть здесь отмеченными, потому что они приводят к заметному расхождению между теорией и экспериментом. Во-первых, в зоне пламени, где температура выше, а плотность меньше, действуют выталкиваюш ие силы, которые деформируют пламя. Следовательно, предположение (1) 4 главы 1 оказывается не вполне справедливым. Во-вторых, течение в горелках рассматриваемого типа почти всегда характеризуется сильной крупномасштабной турбулентностью. Турбулентность вызывает расширение и быстрые флуктуации пламени, и таким образом приводит к качественному расхождению с развиваемой ламинарной теорией. Однако поскольку скорость турбулентного горения предварительно перемешанных газов обычно регулируется интенсивностью турбулентного перемешивания, полученные результаты можно с разумной точностью применить к средним характеристикам турбулентных систем, если заменить коэффициенты диффузии в ламинарном потоке коэффициентами турбулентной диффузии. Турбулентные пламена в потоках с предварительным перемешиванием подробно рассматриваются в главе 7. [c.72]

    В этой главе мы рассмотрим ламинарные пламена (волны дефлаграции), определение которых было дано в главе 2. Будет более подробно исследован вопрос о структуре и скорости этих пламен. Основанием для более детального изложения теории ламинарного пламени служит тот факт, что проблема ламинарного пламени по крайней мере по двум причинам является центральной проблемой теории горения. Во-первых, это наиболее доступная из проблем горения, решение которых требует одновременного учета движения среды и химической кинетики во-вторых, знание основных представлений и результатов теории ламинарного пламени oкaзьfвaeт я существенным при исследовании многих других проблем горения. [c.135]

    Рнс. 1. Схема типичиого эксперимента по исследованию ламинарного пламени. 1 — ламинарное пламя 2 — пилотная горелка 3 — основная горелка 4 — ламинаризатор 5 — смесительная камера в — горючее, 7 — окислитель в — измерительная аппаратура. [c.137]


Смотреть страницы где упоминается термин Пламя ламинарное: [c.646]    [c.402]    [c.114]    [c.116]    [c.195]    [c.229]    [c.82]    [c.267]    [c.310]    [c.55]    [c.197]    [c.5]    [c.63]    [c.137]   
Теория горения (1971) -- [ c.133 , c.136 , c.137 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте