Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент турбулентного потока

    Теплопроводность зависит от скорости газа, следовательно, от степени турбулентности потока. Величина эффективного коэффициента теплопроводности определяется рядом факторов влияние каждого из них следует изучить в отдельности. [c.59]

    Разработанный метод позволяет найти стационарные и нестационарные температурные поля в потоках жидкометаллических теплоносителей в трубах и каналах при переменных коэффициентах турбулентности и различных входных функциях внешнего и внутреннего температурного возмущения системы. Теоретические исследования таких задач имеют важное значение в современной теплофизике ядерных реакторов [102]. При эт ом теория аналитической аппроксимации переменных коэффициентов турбулентного потока, развиваемая [c.324]


    Для гомогенных реакторов в формуле (IX.15) надо заменить на диаметр трубы. Тогда / будет обычным коэффициентом сопротивления в ламинарном или турбулентном потоке. [c.260]

    В турбулентном потоке частицы текущей жидкости движутся по очень сложным траекториям. Точное описание такого потока 14] весьма затруднено. В инженерной практике эти трудности обходят, вводя (в соответствии с опытом) поправку к коэффициентам D, а и v. Вводимый дополнительный член называют коэффициентом проводимости турбулентного потока и обозначают через Н. Теперь уравнения (6-15), (6-18) и (6-19) примут следующую форму  [c.65]

    С помощью зависимости (6-25) можно объяснить физический смысл коэффициента проводимости Н. В случае турбулентного потока появляется, как уже было сказано, нерегулярный вихревой поток макроскопических неустановившихся скоплений частиц. Нерегулярное движение этих молекул жидкости подобно описываемому в кинетической теории газов движению отдельных молекул, а это значит, что частицы жидкости движутся вдоль характерного пути пробега V, называемого путем смешения. Путь смешения играет в этом случае ту же роль, что средняя длина свободного пробега молекул газа. Второй характерной для турбулентного потока величиной является среднее колебание скорости (и). В соответствии с уравнением (6-25) значение Н будет представляться произведением двух величин  [c.65]

    П — коэффициент проводимости турбулентного потока, или м /сек АЯ — теплота реакции, ккал/кмоль или дж/кмоль  [c.74]

    Горение топлива в тепловых двигателях обычно происходит в сильно турбулизованном потоке. Турбулентный поток характеризуется неупорядоченным движением частиц газа, при котором скорость в каждой точке потока меняется по направлению и по величине. Для турбулентного потока характерно наличие пульсаций скорости, давления, температуры и концентрации вещества. Молекулярный механизм передачи тепла и массы вещества интенсифицируется пульсациями и перемешиваниями отдельных объемов газовой смеси. Параметрами, характеризующими турбулентность потока, являются путь перемешивания (масштаб турбулентности) и коэффициент турбулентного обмена. [c.138]

    Сопоставление опытных и теоретических коэффициентов осевой диффузии для турбулентного потока обнаруживает их значительное расхождение [83, 84]. [c.34]


    В последних работах М. X. Кишиневский использует основные количественные выводы модели проницания дав ей, однако, обоснование как модели кратковременного контакта фаз . Основой для построения такой модели считаются допущения о ламинарности движения жидкости на всем протяжении контакта, о независимости ее скорости от поперечной движению потока координаты и о кратковременности контакта фаз. Последнее допущение автор считает по существу основным, так как обоснованность первых двух часто вытекает именно из правомерности третьего при кратковременном контакте фронт диффундирующих с поверхности молекул газа успевает продвинуться на столь малое расстояние, что коэффициент турбулентной диффузии все еще остается меньше коэффициента молекулярной диффузии. На этом основании, по Кишиневскому можно пренебречь турбулентной диффузией и рассматривать движение вблизи свободной поверхности как ламинарное, не учитывая к тому же реальный профиль скоростей. [c.106]

    Многие авторы занимались теоретическим расчетом коэффициента продольной диффузии турбулентного потока, опираясь на ячеистую модель, в которой достигается идеальное перемешивание. [c.46]

    В турбулентном потоке различают для которых коэффициент Я рассчитывают по разным формулам. [c.9]

    Коэффициент трения определяют на основании экспериментальных исследований с помощью метода анализа размерностей. Например, для условий, существующих в промышленных реакторах, при 5000 < Re < 200 ООО (турбулентный поток) [c.67]

    Сг — коэффициент, учитывающий влияние турбулентности потока, несовершенство гидравлических условий работы, расслоение песка и других факторов. [c.316]

    Так, при турбулентном режиме течения жидкости (газа) перенос вещества в потоке начинает определяться беспорядочными турбулентными пульсациями ( вихрями ) и интенсивность перемешивания характеризуется некоторым коэффициентом турбулентной диффузии Отурб. Его значение не зависит непосредственно от физических свойств вещества потока [6, стр. 149] и является функцией его средней скорости й и характерного линейного размера L, т. е. [c.87]

    Пластинчатые теплообменные аппараты характеризуются высоким коэффициентом теплопередачи благодаря высокой турбулентности потока, малой ширине зазора между пластинами и рифлению на них. [c.33]

    Коэффициент конвективной диффузии можно определить путем измерения распространения молекул в турбулентном потоке другой жидкости. Плотность жидкостей, которыми пользуются при измерениях, должна быть одинаковой. Расположение входящих молекул по отношению к расположению выходящих определяется по расстояниям вдоль потока л и поперек его у. Коэффициент конвективной диффузии определяется уравнением, имеющим особенное значение для больших расстояний х  [c.50]

    Точность, вносимая граничными условиями (VI.27), является, однако, обманчивой. Дело в том, что при их выводе предполагается, что диффузионная модель справедлива повсюду, в том числе и для процессов переноса на малых расстояниях. На самом деле, однако, не существует систем, в точности описывающихся уравнением конвективной диффузии (VI. 14) или (VI. 15) с постоянными значениями линейной скорости потока и коэффициента диффузии. В случае турбулентного потока в реакторе без насадки скорость потока почти постоянна по всему сечению аппарата (кроме тонкого слоя близ его стенки), однако коэффициент турбулентной диффузии является переменной величиной, увеличиваясь пропорционально расстоянию от стенки реактора. В ламинарном потоке перенос вещества осуществляется молекулярной диффузией, так что коэффициент диффузии постоянен. Однако основная причина случайного разброса времени пребывания в реакторе — сильное различие локальных скоростей потока на различных расстояниях от стенки аппарата. Наконец, в реакторах с насадкой, отклонение времени пребывания в реакторе от среднего знйчения вызывается образованием турбулентных вихрей в промежутках между твердыми частицами, разбросом локальных скоростей потока за счет неоднородности упаковки слоя и задержкой вещества в застойных зонах. Во всех этих случаях распределение времени пребывания в реакторе делается близким к нормальному, если длина аппарата достаточно велика, и только в этих условиях диффузионная модель становится пригодной для приближенного описания процесса. [c.211]

    Наиболее существенное изменение поля скоростей турбулентного потока (а также соответственно коэффициента сопротивления) с изменением режима течения, т. е. числа Ке, имеет место в тех случаях, когда течение происходит с отрывом потока от твердой поверхности, а изменение Ке вызывает соответствующее перемещение точки отрыва вдоль этой поверхности. Такое течение характерно, например, для отрывных диффузоров с углами расширения 15- 45°, для колен с небольшими радиусами [c.15]


    Развитие вихревого движения приводит к интенсивному поперечному переносу, к развитию турбулентности и, следовательно, интенсивному перемешиванию в потоке. В то же время для осуществления процессов массопередачи необходимо наличие градиента концентраций вдоль потока от входа до выхода нз аппарата, которые должны непрерывно изменяться. Интенсивное перемешивание в турбулентном потоке вызовет и продольное перемешивание, что снизит продольный градиент концентраций и ухудшит разделение. Чем больше будет коэффициент вихревой диффузии тем больше будет влиять эффект перемешивания. В этом смысле коэффициент служит характеристикой интенсивности перемешивания в диффузионных процессах. [c.197]

    Таким образом, поток разбивается на две области область, непосредственно прилегающую к поверхности раздела толщиной 0(,л (диффузионный слой), в которой коэффициент турбулентной диффузии меньше коэффициента молекулярной диффузии и область, представляющую остальную часть потока, в которой коэффициент турбулентной диффузии больше коэффициента молекулярной диффузии. В первой области турбулентной диффузией по сравнению с молекулярной пренебрегают п рассматривают поток вещества, проходящий через нее, как чисто молекулярный. Это положение оказывается справедливым при наличии твердой фиксированной границы раздела. [c.240]

    Для одного и того же значения фактора динамического состояния двухфазной системы / коэффициенты турбулентного переноса массы и энергии Zp — величины одного и того же порядка, поэтому устанавливается следующая пропорциональность между коэффициентом массопередачи К, перепадом давления ДР,, и скоростью потока w  [c.247]

    Максимальная скорость турбулентных пульсаций определяется так же, как и в процессах испарения. Имея значение ( макс, можно определить величины мгновенных коэффициентов теплопередачи при конденсации пузырьков, взвешенных в турбулентном потоке одноименной и инертной жидкости. Д.ия конденсации в однокомпонентных системах (Дс = 0,705 Д и р = л) [c.77]

    При движении жидкости но тарелке в ректификационной колонне ее концентрация х изменяется от некоторого значения Хо на входе до значения Ху на выходе. Изменение состава жидкости происходит за счет взаимодействия с паровым потоком, поступающим на тарелку в количестве V, и эффекта продольного перемешивания, учитываемого коэффициентом турбулентной диффузии Ве (рис. 59). Если положить, что локальный к.п.д. Мерфри — [c.382]

    Рассмотрим кинетику быстрой агрегации за счет движения мелких частиц под действием турбулентных пульсаций [81]. Пусть частицы в турбулентном потоке со средней концентрацией частиц п, увлекаемые турбулентными пульсациями, хаотически перемещаются по объему несущей фазы, так что их движение сходно с броуновским. Пульсационное движение частиц можно поэтому охарактеризовать некоторым коэффициентом D . Задачу об агрегации частиц, как и задачу о броуновском движении в неподвижной среде, можно свести к некоторой диффузионной задаче. Можно считать, что в сфере радиуса йп происходит диффузия частиц, распределение которых характеризуется диффузионным уравнением [c.90]

    Численное значение коэффициента К зависит от многих факторов, которые формально не учтены -уравнениями (турбулентность потока, пенообразование, пульсация, вынос жидкости в верхнюю секцию сепаратора, наличие твердых частиц в газе, высота аппарата, изменение соотношения газа и жидкости в исходном потоке, необходимая степень сепарации и т. д.). Для вертикальных сепараторов К равно 0,06—0,35, для горизонтальных — 0,4—0,5. [c.88]

    При испарении пузырька агента в инертной среде, даже при паросодержании, равном нескольким процентам, величиной среднеобъемной плотности пузырька можно пренебречь по сравнению с плотностью теплоносителя. Коэффициенты теплопередачи при испарении пузырька, взвешенного в турбулентном потоке жидкости, В отличие от таковых при свободном всплывании пузырька, не зависят от размера последнего. [c.62]

    Коэффициенты теплопередачи при конденсации пузырька в турбулентном потоке жидкости так же, как при испарении, не зависят от его размеров. [c.77]

    Особенности первоначальных теорий таковы. Кишиневский [16, 17] предполагает, что перенос вещества осуществляется, главным образом, массовым потоком (т. е. турбулентной диффузией) и считает коэффициент турбулентной диффузии Dt не зависящим от расстояния у до границы раздела фаз. Это равносильно допущению, что поверхность раздела фаз не гасит турбулентность. Между тем это не так. В случае твердой поверхности раздела гашение хорошо -изучено и известна зависимость Dt(y). Для границ жидкость — жидкость и жидкость — газ поверхностное натяжейие, как правило, также обеспечивае.т доста- точную прочность поверхности. Поэтому и для этих систем предположение о независимости коэффициента турбулентной диффузии от расстояния, безусловно, неправильно. Коэффициент же массопередачн оказывается чувствительным к закону изменения Dt(y) [см. ниже уравнение (16.8)]. [c.173]

    Существование в вязком подслое турбулентных пуЛ1>саи.ий и их постепенное затухание с приближением к межфазной границе имеют принципиальное эваче-, ние для проблемы массопередачн, особенно в тех случаях, когда процесс массо-пгредачи лимитируется переносом в жидкой фазе. Действительно, поскольку а жидкостях коэффициент молекулярной диффузии обычно значительно меньше коэффициента кинематической вязкости, турбулентные пульсации, несмотря на свое достаточно быстрое затухание в вязком подслое, дают заметный вклад в массовый поток вещества к границе раздела фаз. Влияние пульсаций на массоперенос становится пренебрежимо малым лишь в пределах так называемого диффузионного подслоя, толщина которого для жидкостей мала по сравнению. с толщиной вязкого подслоя. Скорость межфазного массообмена существенно зависит от характера изменения эффективного коэффициента турбулентной диффузии Pt вблизи межфазной границы. Если предположить, что функция Dt (у) достаточно хорошо описывается первым членом разложения в ряд Тейлора [c.177]

    Аналогии в химической технологии остаются постоянной дискуссионной темой. В литературных работах [20] следует обратить внимание на использование теории Мартинелли [21], содержащ,ую описание внутреннего турбулентного ядра поюка и развивающую аналогию Рейнольдса. Каждый автор принимал, что коэффициент проводимости турбулентного потока Н во всех трех случаях (для компонента, теплоты, импульса) имеет одинаковое значение. Никакой разницы в обозначениях Н для этих потоков тоже не делалось. По Мартинелли, значение Н для разных потоков неодинаково, и между ними существует линейная зависимость. Так, для потоков теплоты и импульса существует связь  [c.100]

    Н — коэффициент проводимости турбулентного потока, л4 /ч или ЛЯ — теплота реакции, кал1моль или ккал/кмоль  [c.101]

    При рассмотрении влияния турбулентности потока на скорость сгорания учитывают масштаб турбулентности I, коэффициент турбулентного обмена -е и пульсационную скорость V. Масштаб турбулентности или путь перемешивания отождествляется с объемом газа, в котором в данный отрезок времени все частицы обладают одинаковой скоростью движения. Величину I можно также интерпретировать как средний диаметр вихря. Коэффициент турбулентного обмена является своего рода эффективным коэффициентом диффузии. Отдельные объемы газа кроме средней скорости потока обладают неупорядоченными, быстро меняюшимися дополнитель-ными скоростями V (пуль- I сационными скоростями).  [c.165]

    Зависимость, приведенная для коэффициента турбулентного обмена, аналогична зависимости для коэффициента молекулярной диффузии D= 3lav, где /о—длина пути свободного пробега молекулы, а и — средняя скорость молекулы. Если I не превосходит глубину фронта пламени в ламинарном потоке бн, то поверхность пламени должна остаться гладкой , однако, как оказалось, и в этом случае наличие турбулентности интенсифицирует обменные процессы. Величина 5н равна примерно 1 мм. Теория рассматривает поверхностное горение турбулентных объемов газа, когда 1<8 , и объемное горение, когда [c.166]

    Характеристики турбулентности (в том числе коэффициент турбулентной диффузии) слабо зависят от вязкости и плотности потоков [142—144]. В отношении пульсационной экстракционной колонны отмечено [143], что точность измерений коэффициента турбулентной диффузии недостаточна для установления зависимости его от числа Рейнольдса. Прямое измерение влияния физических свойств потоков на коэффициент продольной турбулентной диффузии выполнено [144] для колонного экстрактора с мешалкой. [c.153]

    Артор не совсем точно излагает основные концепции, лежащие в основе модели Кинга, а также выводы в отношении характера зависимости от В а, вытекающие из нее. В основу модели положена возможность одновременного действия двух механизмов переноса вещества от свободной поверхности вглубь жидкости в турбулентном потоке. Один из них соответствует постепенному затуханию коэффициентов турбулентного обмена с приближением к межфазной границе. Этот механизм Кинг считает относящимся к вихрям сравнительно небольшого масштаба. Другой механизм связан с обновлением поверхности сравнительно крупными вихрями (их размер должен быть больше толщины слоя, в котором происходит затухание по первому механизму и где соответственно происходит основное изменение концентрации). Таким образом, модель Кинга, по существу, включает представления теорий пограничного диффузионного слоя (см. выше) и обновления поверхности (см. ниже). Что касается возможного характера зависимости от О а, то на основании собственных экспериментальных данных, полученных в ячейке с мешалкой и в насадочной колонне и анализа результатов, полученных другими исследователями, Кинг приходит к выводу о более узком интервале практически возможного изменения показателя степени при Оа от 0,5 до 0,75. Прим. пер. [c.102]

    Скорость относительного движения частиц в турбулентном потоке можно представить в виде [ИЗ] иа—u l (ea) где в — удельная мощность на перемешивание. Коэффициент массоотдачи для кристалла, взвешенного в турбулентном потоке, представим в виде [114] (eDVva ) / . Удельную мощность на перемешивание представим в виде [115] е = к,р, п ё Тогда скорость роста [c.311]

    В турбулентном потоке величина коэффициента диффузии рална [c.109]

    Распределительная камера теплообменника служит для распределения жидкости по трубкам пучка с целью обеспечения соответствующего числа ходов. Внутренние поперечные перегородки устанавливают так, чтобы основной поток двигался зигзаго- или винтообразно. Число поперечных перегородок обычно соответствует числу ходов по трубному пространству перегородки обеспечивают турбулентность потока, что повышает коэффициент теплопередачи. [c.51]


Смотреть страницы где упоминается термин Коэффициент турбулентного потока: [c.62]    [c.170]    [c.174]    [c.176]    [c.258]    [c.19]    [c.192]    [c.252]    [c.107]    [c.111]    [c.120]    [c.528]   
Научные основы химической технологии (1970) -- [ c.65 , c.74 , c.100 , c.101 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент турбулентной

Поток турбулентный



© 2025 chem21.info Реклама на сайте