Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горючее

    Этиловый спирт хорошо горит. В его молекуле уже есть немного кислорода, поэтому он выделяет при горении только той энергии, какую выделяют углеводороды. Кроме того, этиловый спирт дороже бензина. И тем не менее очень может быть, что когда нефтяные месторождения будут близки к истощению, нам придется использовать этиловый спирт как горючее для автомобилей. [c.92]

    Различают высший и низший пределы воспламенения смеси. Высшим пределом воспламенения смеси называется такое содержание паров топлива в воздухе, при котором дальнейшее увеличение их делает смесь невоспламеняющейся. Низшим — такое содержание паров топлива в воздухе, при котором дальнейшее уменьшение их делает смесь невоспламеняющейся. Содержание паров топлива в воздухе может быть выражено в процентах от объема горючей смеси, в граммах на 1 ж горючей смеси и при помощи коэффициента избытка воздуха а (табл. 12). [c.74]


    Для горючих смесей акад. Н. Н. Семенов впервые дал математическую формулировку условий самовоспламенения самовоспламенение возможно прн равенстве или превышении тепловыделения от предпламенных реакций над теплопотерями реагирующей системы в окружающую среду. [c.76]

Рис. 51. Зависимость нормальной скорости распространения пламени от температуры горючей смеси н-гептана Рис. 51. Зависимость <a href="/info/95892">нормальной скорости распространения</a> пламени от <a href="/info/399555">температуры горючей</a> смеси н-гептана
    Для поддержания нормального процесса горения температура в зоне горения не должна быть ниже 850° С. Скорость горения зависит от количественного соотношения горючего и воздуха. Она возрастает до достижения избытка воздуха порядка 50%, после чего начинает понижаться. [c.106]

    Пределы воспламенения горючих смесей при 20 С и 760 мм рт.ст. [c.74]

    Минимальная температура самовоспламенения горючих смесей в зависимости [c.78]

    Несмотря на критику Бургаве, теория флогистона начала завоевывать популярность. К 1780 г. она была принята химиками почти повсеместно, так как позволила дать четкие ответы на многие вопросы. Однако один вопрос ни Шталь, ни его последователи разрешить не смогли. Дело в том, что большинство горючих веществ например дерево, бумага, жир, при горении в значительной степени исчезали. Остававшаяся сажа или зола была намного легче, чем исходное вещество. Этого, по-видимому, и следовало ожидать, так как при горении флогистон улетучивался из вещества. [c.38]

    Реакции окисления представляют собой ряд повторяющихся звеньев. В результате этих реакций образуются активные частицы, свободные радикалы. Чтобы окисление проходило в форме горения, должны быть условия для быстрого перемещения активных частиц и разветвления цепей реакций. Такие условия имеются только в газовой среде, поэтому началу горения всегда предшествует испарение топлива и образование смеси его паров с воздухом (горючей смеси). [c.72]

    Скорость распространения пламени зависит от давления, при котором происходит процесс горения. При снижении давления ниже атмосферного скорость горения вначале несколько возрастает, а затем падает. Нормальная скорость распространения пламени зависит также от температуры горючей смеси, по которой распространяется пламя. На рис. 51 приведена зависимость нормальной скорости распространения пламени от температуры горючей смеси н-гептана. Как видно, скорость распространения пламени увеличивается с повышением температуры по линейному закону. Этот характер зависимости сохраняется и для других классов углеводородов, при этом изменяется лишь угол наклона прямой относительно оси абсцисс. Большое влияние на нормальную скорость распространения пламени оказывает энергия активации молекул топлива чем меньше энергия активации, тем выше скорость нормального распространения пламени (табл. 15). [c.80]


    Горючие составные части топлива соединяются с кислородом воздуха но следующим химическим реакциям. [c.106]

    Пропан и бутан, как и метан, горючи. Их можно под давлением закупорить в металлические балЛоны, а потом присоединить баллоны к плите. Если газ понемногу подавать к горелкам, то его можно поджечь на выходе из горелки и он будет гореть ровным пламенем. Это очень удобно, особенно для отдаленных районов, куда газ для бытовых нужд не подается по трубам. [c.22]

    В 1774 г. Пристли сделал, возможно, самое важное свое открытие. Как уже говорилось выше, он собирал газы над ртутью. При-нагревании на воздухе ртуть образует кирпично-красную окалину -(оксид ртути). Пристли клал немного окалины в пробирку и нагревал ее, фокусируя на ней с помощью линзы солнечные лучи. Окалина при этом вновь превращалась в ртуть, и в верхней части пробирки появлялись блестящие шарики металла. При разложении окалины выделялся газ с весьма необычными свойствами. Горючие-вещества горели в этом газе быстрее и ярче, чем на воздухе. Тлеющая лучина, брошенная в сосуд с этим газом, вспыхивала ярким пламенем. [c.42]

    Таким образом, между способностью вещества к горению и принадлежностью его к живому или неживому миру существовала определенная связь. Хотя, безусловно, были известны и исключения. Например, уголь и сера — продукты неживой материи — входили в группу горючих веществ. [c.69]

    Кроме того, все без исключения органические соединения имеют своих молекулах один или более атомов углерода-. Почти все молекулы содержат также атомы водорода. Поскольку углерод и водород сами по себе горючи, то вполне можно предположить, что соединения, Б которых эти элементы играют такую важную роль, также относятся к числу горючих. [c.73]

    Полимеризация при повышенной температуре [38]. По второму способу полимеризация проводится с горячей кислотой. Этим способом, при котором, кроме изобутенов присутствует также н-бутен (сополимеризация), получают неоднородную смесь олефинов, используемую в дальнейшем для производства карбюраторного горючего. Применять метод для получения нефтехимических продуктов нецелесообразно. [c.65]

    Целлулоид невзрывоопасен, но он легко воспламеняется, что может быть причиной пожара, поэтому Истмен начал поиски менее горючих материалов. Когда в целлюлозу вместо нитрогрупп ввели ацетильные группы, полученный продукт остался столь же пластичным, как и нитроцеллюлоза, но он уже не был легко воспламеняющимся. С 1924 г. ацетилцеллюлозные пленки начали использовать [c.133]

    Но важнее всего вот что. По мере того как атомы водорода замещаются атомами хлора, соединение становится все менее горючим. Четыреххлористый углерод, в молекуле которого вовсе нет водорода, совсем не горит. Его даже используют в огнетушителях некоторых типов. Когда четыреххлористый углерод разбрызгивают над огнем, тепло от пламени легко превращает его в газ. Этот газ более чем в 5 раз тяжелее воздуха и поэтому не так легко улетучивается. Он окутывает пламя и прекращает доступ кислорода к нему. А так как сам четы- [c.69]

    Большое влияние на пределы воспламенения оказывает молекулярный вес топлива. На рис. 44 приведены пределы воспламенения горючих смесей индивидуальных углеводородов, отличающихся молекулярным весом. Как видно из рисунка, с увеличением молекулярного веса от метана (/) до гексана (б) пределы воспламенения значительно расширяются. [c.74]

    Кроме концентрационных пределов воспламенения, воспламеняемость горючей смеси характеризуется минимальной (критической) энергией электрической искры. Дело в том, что не всякий искровой разряд в горючей смеси вызывает ее воспламенение, хотя температура такого разряда измеряется тысячами градусов. Для воспла менения и создания самораспространяющейся реакции горения необходима определенная минимальная энергия искрового разряда. [c.75]

    Нефть получила свое название от слова нафта , что ка языке одного из народов Малой Азии означало просачиваться . Нефть — это горючая маслянистая жидкость чаще темного цвета, реже светло-желтая или даже бесцветная с характерным запахом. Известна нефть с древних времен. Она применялась как лекарство, как осветительный материал, как цементирующее вещество при строительстве и т. д. До середины XIX в. нефть добывали примитивным способом в очень небольших количествах. С появлением в начале XX в. и с дальнейшим развитием двигателестроения потребность в нефти и нефтепродуктах резко возросла, и это дало огромный толчок в добыче и переработке нефти. Многие из виднейших отечественных и зарубежных химиков и инженеров вели работу в области исследования и переработки нефти. Такие ученые, как Д. И. Менделеев, В. В. Марковников, В. Г. Шухов, А. А. Летний, А. М. Бутлеров, [c.5]

    Горение — это процесс быстрого окисления горючих компонентов, входящих в состав топлива, сопровождающийся выделением тепловой энергии. Продуктами полного окисления являются, как правило, газообразные негорючие вещества (СОг, НаО и др.). [c.72]

    Под пусковыми свойствами топлива подразумевается способность его к воспламенению от электрической свечи и возможность, вывести при его помощи двигатель на устойчивый режим работы. При этом пусковое топливо после воспламенения должно давать достаточно устойчивое и интенсивное горение, чтобы обеспечить воспламенение основной части топлива. Воспламенение горючей, смеси в основном определяется  [c.73]


    Одной из важных характеристик топлива, позволяющих судить о его пусковых свойствах и о стабильности процесса горения, является температура самовоспламенения паров топлива, т. е. такая температура, при которой происходит самовоспламенение горючей смеси без контакта с открытым пламенем. Процесс самовоспламенения горючей смеси встречается во всех двигателях внутреннего сгорания. Дизельные двигатели работают на основе этого процесса. В двигателях с воспламенением от искры самовоспламенение горючей смеси является крайне нежелательным и даже вредным явлением, так как нарушает нормальный процесс сгорания. В турбореактивных двигателях самовоспламенение горючей смеси — явление положительное, способствующее более устойчивому процессу сгорания. [c.76]

    Чем шире пределы воспламенения горючей- смеси, тем лучшими пусковыми свойствами обладает топливо. [c.74]

Рис. 45. Зависимость пределов воспламенения горючей смеси от строения молекул углеводорода Рис. 45. <a href="/info/1784265">Зависимость пределов воспламенения</a> <a href="/info/909037">горючей смеси</a> от <a href="/info/4829">строения молекул</a> углеводорода
    У всех топлив температура самовоспламенения горючих смесей повышается с понижением давления (табл. 14). [c.78]

Рис. 47. Зависимость критической энергии воспламенения от химического состава углеводородов и состава горючей смеси Рис. 47. Зависимость <a href="/info/1618606">критической энергии воспламенения</a> от химического состава углеводородов и состава горючей смеси
    Минимальные температуры и периоды задержки самовоспламенения горючих смесей некоторых топлив [c.77]

    Еш,е со времени открытия огня человек разделил веш,ества на две группы горючие и негорючие. К горючим веществам относились, в частности, дерево и жир или масло, оии в основном и служили топливом. Дерево — это продукт растительного п эисхождения, а жир и масло — продукты как животного, так и растительного происхождения. Вода, песок, различные горные породы и большинство других веществ минерального происхождения не горели, более того, гасили огонь. [c.69]

    В 1669 г. немецкий химик Иоганн Иоахим Бехер (1635—1682) попытался дать рационалистическое объяснение явлению горючести. Он предположил, что твердые вещества состоят из трех видов - земли , и один из этих видов, названный нм жирная земля (terra pinguis), принял за принцип горючести . Последователем весьма туманных представлений Бехера был немецкий врач и химик Георг Эрнст Шталь (1660—1734). Он еще раз обновил название принцип горючести , назвав его флогистоном — от греческого фЯоуютсе — горючий. Шталь предложил схему процесса горения, объяснявшую роль флогистона. [c.37]

    Согласно Шталю, горючие вещества богаты флогистоном. В процессе горения флогистон улетучивается, а то, что остается после завершения процесса горения, флогистона не содержит и потому продолжать гореть не может. Шталь далее утверждал, что ржавление металлов подобно горению дерева. Металлы, по его мнению, содержат флогистон, а ржавчина (или окалина) флогистона уже не содержит. Такое понимание процесса ржавления позволило дать приемлемое объяснение и процессу превращения руд в металлы — первому теоретическому открытию в области химии. Объяснение Шталя состояло в следующем. Руда, содержание флогистона в которой мало,1нагревается на древесном угле, весьма богатом флогистоном. Флогистон при этом переходит из древесного угля в руду, в результате древесный уголь превращается в золу, бедную ф/1оги- [c.37]

    Пристли пытался объяснить это явление, используя теорик> флогистона. Поскольку горючие вещества горели в этом газе весьма ярко, то они должны были очень легко выделять флогистон. Чем объяснить это Как следует из теории флогистона, воздух легко поглощает флогистон, но до определенного предела, после чего горение прекращается. В открытом Пристли газе горение шла лучше, чем в воздухе, и он решил, что этот газ совсем не содержит флогистона. Пристли назвал открытый им газ дефлогистированным воздухом . (Однако через несколько лет его переименовали в кислород-, этим названием мы пользуемся и сегодня.) [c.42]

    Как мы отмечали выше, в 1783 г. Кавендиш все еще изучал горючий газ . Он сжигал часть определенного объема этого газа и тщательно изучал образующиеся при этом продукты. Кавендиш выяснил, что образующиеся при горении газы конденсируются в жидкость, которая, как показали анализы, является всего-навсего водой. [c.49]

    Это очень полезное свойство. Метан можно провести по трубам в дома (вместе с другими горючими газами, например водиридом и 1и окисью углерода). Сжигая этот газ в к()т.1ах и плитах, мы согреваем дома и готовим пищу. [c.20]

    В тексте имеются ссылки на изданные в 1956 и 1957 гг. издательством Akademie Verlag книги автора Химия и технология парафиновых углеводородов и Химия и технология моноолефинов , в которых часть веществ, упоминаемых в настоящей книге, была рассмотрена значительно более широко и подробно. Процессы, которые не могут рассматриваться как нефтехимические, в особенности сортировка нефтей, получение карбюраторного горючего, а также производство высокооктановых бензинов методами алкилирования и полимеризации, рассматриваются в настоящей книге лишь вкратце. [c.8]

    При воздействии фтористого водорода на четыреххлористый углерод в присутствии фтористой сурьмы как катализатора получают дихлордифтор-метан, кипящий при —30°, не горючий и лишь мало ядовитый газ, обладаю-1ЦИЙ исключительными свойствами как хладагент. Представление о возможных путях использования четыроххлористого углерода дает рис. 62. [c.119]

    Ди-, три- и тетрамеризация газообразных при нормальных условиях олефиновых углеводородов, в частности иропена, для получения промежуточных продуктов нефтехимической промышленности была уже вкратце рассмотрена ранее. Получение полимербензина переработкой газов стабилизации крекинг-бензинов в производстве карбюраторного горючего в настоящей книге не рассматривается. [c.222]

    Процесс получения смесей окиси углерода и водорода частичным окислением природного газа (метана), поставляющий исходный продукт для проведения синтеза по Фишеру — Тропшу, в промышленном масштабе, играет в настоящее время очень большую роль з обеспечении двигателей внутреннего сгорания горючим эта роль в будущем может стать решающей. Подробности об этом процессе сообщаются ниже. Реакция протекает по уравнению [c.439]

    Специалисту, эксплуатирующему тот или другой тип летателЬ ного аппарата, необходимо знать не только исходные свойства горюче-смазочных материалов, но и изменения физико-химических свойств под воздействием внешних факторов. Без таких знаний невозможно создать условий хранения и транспортировки, выбирать такие режимы работы систем летательного аппарата, при которых эти изменения будут минимальными. [c.3]

Рис. 44. Зависимость пределов воспламенения горючей смеси от молекулярного йеса углеводорода Рис. 44. <a href="/info/1784265">Зависимость пределов воспламенения</a> <a href="/info/909037">горючей смеси</a> от молекулярного йеса углеводорода
    Для определения температуры самовоспламенения горючей смеси можно пользоваться прибором, схема которого показана на рис. 48. Методика работы заключается в том, что в нагретую кварцевую колбу вводят определенное количестно топлива и регистрируют время от момента ввода топлива до воспламенения и температуру. [c.78]


Смотреть страницы где упоминается термин Горючее: [c.30]    [c.34]    [c.122]    [c.4]    [c.74]    [c.74]    [c.74]    [c.78]    [c.80]   
Горение (1979) -- [ c.11 , c.12 ]

Краткий справочник по горючему (1979) -- [ c.13 ]

Химия в атомной технологии (1967) -- [ c.18 , c.20 , c.199 , c.202 , c.205 ]

Горение Физические и химические аспекты моделирование эксперименты образование загрязняющих веществ (2006) -- [ c.8 , c.9 ]




ПОИСК







© 2024 chem21.info Реклама на сайте