Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы пламен

    Химический состав керосина влияет на тип пламени и на образование несгорающего остатка. [c.462]

    Поскольку молекулы расщепляются до окисления, они образуют твердый уголь, который затем раскаляется. Необходимо отметить, что хотя для углеводородов низкого молекулярного веса, таких как керосин или даже газообразные углеводороды, характерен голубой тип пламени, изменением указанных условий горения можно получить желтое пламя. Обратный переход трудно осуществим. Так, только с большим трудом может быть получено голубое пламя при горении тяжелых углеводородных котельных [c.475]


    Распространение холодного пламени по рабочей смеси, в отличие от нормальных горячих пламен, осуществляется исключительно диффузией в свежую смесь активных частиц, радикалов, образующихся при распаде перекисей. Результатом холоднопламенной стадии является замена исходного, относительно инертного углеводорода химически активной смесью органических перекисей, альдегидов и свободных радикалов. Эта активная смесь подвергается дальнейшему окислению и после некоторого периода индукции происходит новый взрывной распад перекисных соединений, аналогичный прежнему, но с вовлечением большей массы исходной смеси и с участием большего количества перекисных соединений. При этом возникает особый тип пламени, промежуточный между холодным и горячим, названный А. С. Соколиком [27] вторичным холодным пламенем . Реакция идет в нем так же, как в холодном пламени, не до конечных продуктов СО2 и НаО, а до СО, но степень разогрева в этом пламени уже велика и соответствует выделению примерно половины полной энергии сгорания, поэтому вторичное холодное пламя распространяется с большей скоростью не только за счет диффузии активных центров, но и за счет теплопередачи. После прохождения вторичного холодного пламени остается нагретая до высокой температуры смесь СО и неиспользованного кислорода. При достаточно высокой концентрации активных центров происходит цепочечно-тепловой взрыв этой смеси, рождающий настоящее горячее пламя, т. е. происходит самовоспламенение [27]. [c.67]

    ХАРАКТЕРНЫЕ ТИПЫ ПЛАМЕНИ ТЕПЛОВОЙ РЕЖИМ ГОРЕНИЯ [c.12]

    Детектирование столь незначительных количеств вещества возможно лишь с помощью высокочувствительных детекторов, например типа пламенно-ионизационного или аргонового. [c.202]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]


    Избежать помех в пламенах или уменьшить их можно различными приемами, а именно правильно подбирая аппаратуру, тип пламени, его зону, вводя различные реагенты, например, с целью изменения условий генерации аэрозоля, или связывая мешающие элементы в соединения, имеющие малую упругость пара. В связи с влиянием катионов и анионов на интенсивность спектральных линий большое значение приобретает способ перевода твердой пробы в раствор. [c.14]

    Зависимость интенсивности спектральной линии от концентрации элемента аппроксимирована прямой линией лишь для сравнительно узкого интервала концентраций, который в большой степени зависит от параметров прибора и типа пламени. В практической работе необходимо установить линейность между силой фототока и концентрацией элемента в растворе для этого используют эталонные растворы. [c.15]

    Оптическая схема анализатора ПАЖ-1 позволяет компенсировать спектральные помехи собственное излучение пламени и излучение других элементов, например натрия при определении кальция и наоборот. В этом преимущество данного типа пламенного фотометра перед фотометром ФПЛ-1. [c.27]

    ОСНОВНЫЕ ПРОЦЕССЫ, ОПРЕДЕЛЯЮЩИЕ СКОРОСТЬ ГОРЕНИЯ ДЛЯ РАЗЛИЧНЫХ ТИПОВ ПЛАМЕН [c.5]

    Поэтому в теории горения рассматривается несколько основных типов пламен. Они неодинаковы по своему научному и практическому значению и степени изученности. Неодинаковы параметры, представляющие наибольший интерес для данного типа пламени. Существенно отличается подход к теоретическому рассмотрению каждого типа пламени. Некоторые различия имеются и в эксперимептальных методах. [c.5]

    Перечислим наиболее важные для теории горения типы пламен 1) ламинарное пламя в гомогенной газовой смеси. К этому же типу относится пламя при горении летучих взрывчатых веществ  [c.5]

    Коротко рассмотрим некоторые характеристики основных типов пламен в той мере, в какой это полезно для понимания закономерностей горения конденсированных смесей. [c.6]

    Ламинарное пламя в гомогенных смесях имеет исключительно большое значение для теории горения, так как для этого типа пламени влияние химических факторов не затемняется процессами перемешивания исходных компонентов, а поле скоросте свежей смеси может быть весьма простым. [c.9]

    Тип пламени Скорость реакции, предполагаемое вы-ражение для го /Ь Числовое значение величины U Применимость стационарного приближения [c.192]

    Рассчитан [1195] квантовый выход для натрия в зависимости от типа пламени и чистоты аргона при 3000 С. [c.134]

    Гасящее влияние сульфатов и фосфатов на излучение магния проявляется при всех используемых для определения магния дли нах волн. При 285,2 нм влияние фосфатов меньше, чем при 371 и 383 нм [660]. Помехи сильно зависят от типа пламени. При использовании ацетиленового пламени с увеличением доли ацетилена в смеси помехи уменьшаются [860]. [c.185]

Таблица 14.34 Типы пламенных фотометров и спектрофотометров Таблица 14.34 <a href="/info/1585486">Типы пламенных фотометров</a> и спектрофотометров
    Типы пламен и их структура. Пламя — исторически первый и до сих пор наиболее распространенный тип атомизатора в атомно-абсорбционном анализе. Для получения пламен применяют различные комбинации горючих газов с окислителями, характеризующиеся различной температурой и скоростью горения (табл. 14.39). [c.831]

    Пламя воздух—ацетилен — восстановительное. (Однако в этом типе пламени наблюдаются многочисленные и трудно  [c.904]

    Некоторые детали горения различаются в разных типах пламени. Обычно рассматривают два вида пламени желтое и голубое. Иногда выделяют зеленое пламя. В случаях и голубого и зеленого пламени цвет приписывают излучению некоторых радикалов, существующих в реакционной зоне. Светящееся желтое пламя объясняется свечением раскаленных угольных частиц, получающихся в результате процессов крекинга больших молекул в меньшие фрагменты. Различия между обоими видами пламени были обрисованы Хасламом и Расселом (Haslam and Russell [73]) и более полно Ромпом [74]. Желтое пламя дает непрерывный спектр, а голубое — полосатый. Один тип может быть превращен в другой изменением условий горения. Каждое топливо при неизменных условиях дает только один тип пламени. [c.475]

    Самим авторам такой результат представляется несколько неожиданным, поскольку, как было показано Маккормиком и Тоунендом [62] (см. табл. 33), существует вполне выраженное различие в химической природе продуктов, получаемых в этих двух типах пламен. Следует, однако, отметить, что через 6 лет (в 1952 г.) Норриш [70] при низкотемпературном окислении гексана, исследуя спектроскопически холодные и голубые пламена, получил такой же результат полного совпадения их спектров со спектром возбужденного формальдегида. [c.189]


    Методы изучения спектров свободных радикалов. Наиболее старый метод получения спектров свободных радикалов связан с возбуждением спектров испускания. Пламена представляют собой типичный пример источника таких спектров. В спектре обычной бунзеновской горелки наблюдается ряд двухатомных свободных радикалов, таких, как СН, С2 и ОН. В спектре углеводородного пламени вблизи 2800 А появляется, кроме того, распространенная система полос, получившая название полос углеводородного пламени. Предположительно эта система полос была отнесена к свободному радикалу НСО, но только совсем недавно попытки проанализировать этот спектр привели к частичному успеху. Другим типом пламени для получения свободных радикалов является атомное пламяу в котором атомарньж водород, кислород или азот взаимодействует с молекулами, вызывая излучение, обусловленное образованием свободных радикалов. Например, атомарный водород с окисью азота N0 дает пламя, спектр которого в основном связан с НКО. Взаимодействие активного азота (т. е. атомарного азота) практически с любым газообразным соединением приводит к возбуждению спектров испускания некоторых свободных радикалов В качестве одного из интересных примеров укажем на пламя, возникающее при добавлении паров ВС1з в струю активного азота. При этом возбуждается интенсивный дискретный полосатый спектр, [c.11]

    Этот тип пламени изучен значительно подробнее и глубже, чем любой другой тип пламенп. [c.9]

    Представляет интерес оценить порядок величины для скорости выделения тепла (Фщах) в зоне горения. Такая оценка полезна при сравнении различных типов пламен и особенно при рассмотрении пламен, где одновременно происходит горение гомогенной смеси и твердых частиц (см. ниже). К сожалению, измерение Ф,пах (но профилю температур) связано с большими трудностями и погрешностями и практически выполнено только при низких давлениях. Порядок величины Фтах можно также оценить, используя (8) и аналогичные им соотношения. [c.27]

    Косвенный направленный теплообмен может быть организован и при замене кладки холодной поверхностью с весьма высоким коэффициентом отражения (рк =0,950,97). Печи этого типа были названы безынерционными они созданы впервые в СССР И. С. Назаровым и М. А. Кузьминым [215, 147]. Название безынерционная печь нельзя считать удачным, так как оно не характеризует ее особенности как теплообменного аппарата. Правильнее называть их рефлекторными или отражательными. Следует подчеркнуть, что термин отражательные печи сейчас неправильно применяется к некоторым типам пламенных печей, имеющих опнеупорную кладку. [c.340]

    Итак, в изложенном окисление ЗОг рассматривается как гетерогенная реакция на каталитических поверхностях. Нельзя сказать, что подобные соображения являются исчерпывающими хотя бы потому, что в них газовой среде не отводится никакой роли. В последнее время ряд исследователей заинтересовался вопросом гомогенного окисления ЗОг в газовой фазе. Остановимся вкратце на относящихся сюда опытах. В них исследовали окисление ЗОг в газовом пламени различного происхождения, при отсутствии и наличии ингибиторов и пр. Прямое опреде-ленпе ЗОз производилось методом Флинта (см. стр. 17) точка росы замерялась методом электропроводно сти при помощи специального прибора. Исследовались два типа пламени — обыкновенной горелки Бунзена, при сжигании городского газа, и диффузного пламени СН4, Нг, СО, сжигавшихся в воздухе при помощи кварцевой насадки. Для удобства ввода ингибиторов пламени металлическая трубка горелки Бунзена была заменена кварцевой того же диаметра, снабженной боковым отводом. Через последний и вводились исследуемые реагенты, обычно в виде паровоздушной смеси, получавшейся при пропуске воздуха через летучую жидкость СО, Нг, СН4 брались из баллонов иеподсушенными и без дополнительной очистки, ЗОг смешивался с горючим газом перед горелкой через сифон. Объемы газов измерялись реометрами, заполненными па-рафи ювым масло.м. [c.104]

    К сожалению, нет никаких экспериментальных сведений по-изменению геометрии заряда, подтверждающих предложенную схему поверхностных реакций, а имеющиеся данные говорят скорее в пользу многопламенной структуры, чем структуры с одиночным пламенем, постулированной в работе [72]. Поэтому была предложена статистическая модель [7], базирующаяся на нескольких типах пламен ) (рис. 33, в). В этой модели приняты следующие предположения 1) прогрев связующего и окислителя осуществляется за счет теплопроводности, 2) связующее и окислитель разлагаются эндотермически, 3) между продуктами разложения в конденсированной фазе протекают экзотермические реакции и 4) газообразные продукты улетучиваются и реагируют в газовой фазе. При низком давлении рассматриваются три вида пламени первичное пламя между продуктами разложения связующего и окислителя, пламя окислителя и конечное диффузионное пламя между продуктами двух других пламен. Эта модель предсказывает зависимость скорости горения от содержания окислителя в ТРТ и от начальной температуры топливного заряда, среднюю температуру поверхности и расстояние до фронта пламени. Модель несколько завышает влияние размера частиц по сравнению с наблюдаемым на опыте. Бекстед усовершенствовал модель, применив ее к двухосновному ТРТ [4], а в следующей работе [5] предположил, что горючее и окислитель имеют разную, а не одинаковую (среднюю) температуру поверхности. Он также перешел от осреднения по [c.70]

    Открытые электротермические атомизаторы представляют собой электрически нагреваемые испарители, над которыми пропускают пучок света (см. рис. 14.59). Аналитической зоной служит просвечиваемая область над испарителем. Можно вьщелить две группы таких атомизаторов без дополнительного нагрева пробы и комбинированные — с дополнительным нагревом паров за счет пламени. В первом варианте (рис. 14.59, а-г) испарителем служат тигель из графита, графитовый стержень, проволочная спираль из тугоплавкого металла, танталовая лента, лодочка, графитовый жгут. Во втором варианте (рис. 14.59, и, е) электрически нагреваемый испаритель помещают в пламя щелевой или перфорированной горелки. Испарителем служат графитовый стержень или удлиненная лодочка, располагаемые вдоль пучка света, либо капсула из пористого графита. Для защиты открытых атомизаторов от воздействия атмосферного воздуха применяют штативы с вертикальным потоком защитного газа или газов пламени. Для атомизаторов типа печь—пламя используют смеси природного газа, ацетилена или водорода с воздухом, ацетилена с оксидом азота (1) или другие типы пламен, используемых в пламенном атомно-абсорбционном анализе. [c.842]

    В таблице суммированы данные, которые полезно знать при выборе условий определения отдельных элементов методом атомной абсорбции в пламени обозначения и названия химических элементов относительные атомные массы элементов (А) атомные числа элементов (г) энергии диссоциации монооксидов — наиболее устойчивых химических соединений в пламени (Ло, эВ) энергии ионизации атомов ( /, эВ) длины волн резонансньк линий (нм), применяемых для измерения атомного поглощения положение энергетических уровней (нижнего и верхнего, см" ), соответствующих данному переходу рекомендуемая спектральная ширина щелей спектрофотометра с учетом возможных спектральных помех и оптимального соотношения сигнал/фон оценочное значение величины характеристической концентрации для конкретного типа пламени и возможные спектральные помехи при измерениях атомного поглощения. [c.917]

    Газовая смесь и тип пламени (окислительное, стехио-метричесное, восстановительное и т.п.), обычно обеспечивающие наилучщую чувствительность измерений, приведены в примечаниях. Там же указаны дополнительные сведения по оптимизации условий измерений и по возможности дана расшифровка потенциальных спектральных помех. [c.917]


Смотреть страницы где упоминается термин Типы пламен: [c.152]    [c.29]    [c.58]    [c.169]    [c.15]    [c.60]    [c.44]    [c.45]    [c.69]    [c.69]    [c.905]    [c.907]    [c.910]    [c.911]    [c.913]   
Горение Физические и химические аспекты моделирование эксперименты образование загрязняющих веществ (2006) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Общая характеристика и типы пламен

Одномерное неустановившееся распространение звука в бинарной реагирующей смеси идеальных газов в случае реакции типа Теория ламинарного пламени

Основные процессы, определяющие скорость горения для различных типов пламен

Пламя основные типы

Пламя типа Бунзена

Типы спектроскопии пламени

Характерные типы пламени. Тепловой режим горения



© 2025 chem21.info Реклама на сайте