Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая кибернетика, определение

    Нефтяные системы можно отнести к объектам нового направления в физике конденсированных сред, получившем условное название физики мягкого состояния и объединяющем физику полимеров, жидких кристаллов, критических явлений, коллоидно-дисперсного состояния [4]. Существует значительная корреляция между свойствами на микро-, мезо- и макроуровнях их супрамолекулярной организации (рис. 1.) В соответствии с обобщенными принципами химической кибернетики [5] технологический процесс рассматривается как передача и закрепление в материале определенной информации, которая и определяет комплекс его свойств. Носителем информации является структура исходного материала. В замкнутом технологическом цикле 1Е=соп81, где I — уровень информации, заложенный в исходном сырье, а Е — энергетические затраты на технологической стадии. Чем больше информации заложено в исходном сырье, тем меньше необходимо за[тратить энергии для достижения необходимого уровня конечных свойств. Технологические режимы должны быть такими, чтобы уровень исходной структурной организации сырья не только не уменьшался в ходе превращений (такое возможно в силу неопределенности структурных перестроек в ходе технологического процесса), а возрастал, достигая максимальной степени в конечном продукте. Рис. 1 иллюстрирует возможности управления процессами на макроуровне влиянием на микроструктуру нефтяных систем. [c.174]


    Кибернетика каталитического процесса. Катализ в широком смысле слова не сводится к одному лишь простому снижению барьера реакции, идущей без катализатора. Для катализа главное не только и не столько ускорение химических реакций, сколько целый комплекс функций управления, регулирования, программирования химических и биохимических процессов, совокупность которых естественно назвать кибернетикой каталитического процесса [81]. Высокие скорости — не обязательная и не самая существенная особенность катализа. К кибернетическим функциям катализаторов можно отнести следующие [81] 1) обеспечение многократной повторяемости этапов единственно возможного или резко преобладающего каталитического процесса ( кинетического потока ) 2) обеспечение преобладания одной или нескольких определенных реакций из числа возможных 3) обеспечение сопряжения двух или нескольких процессов 4) получение заранее заданной химической и пространственной структуры продукты реакции (табл. 7.2). [c.303]

    Общая характеристика. Системотехника применительно к химической промышленности (проектирование химико-технологических систем) представляет собой раздел технической кибернетики, занимающийся анализом свойств отдельных элементов технологического процесса, связями и зависимостями между ними, а также синтезом из этих элементов единой системы, обеспечивающей в определенных условиях достижение наилучших технологических и экономических результатов. Понятие большая система пока еще не имеет однозначного определения, однако оно оказалось полезным при постановке и решении очень важных практических задач и некоторых теоретических вопросов. Можно указать следующие характерные свойства, которые, как правило, выступают в сложных системах [57]  [c.473]

    Таким образом, изучение процесса не в сложной совокупности, а по частям — основное требование построения математической модели с позиций второго направления в химической кибернетике, позволяющее применять метод математического моделирования. При этом математическая модель представляет собой математическое описание изучаемого процесса, отражающее сущность протекающих в объекте явлений путем установления взаимосвязи между параметрами этого процесса. Параметры процесса с позиций второго направления удобно различать по признакам, которые отражают физический смысл каждого параметра (в отличие от разделения их на группы входов и выходов с позиций черного ящика ), В связи с этим рекомендуется [16] различать такие классы параметров конструктивные, физические и элементарных процессов. В свою очередь, каждый класс состоит из определенных групп параметров по [c.53]


    В связи с широким использованием в промышленности процессов полимеризации вопросы их математического моделирования весьма актуальны. Математическое моделирование как метод познания реальной действительности получило в последнее время распространение как в связи со значительным усложнением объектов исследования, так и благодаря бурному развитию вычисли-, тельной техники, позволяющей осуществлять собственно моделирование и получать необходимые практические результаты. Моделирование— один из основных методов кибернетики (в данном случае химической) в широком смысле этого понятия гносеологическим и методологическим аспектам его в отечественной философской литературе уделяется большое внимание [14]. С комплексным изучением моделирования как определенного познавательного приема тесно связано рассмотрение более конкретных методологических проблем, т. е. использование системного подхода , характерного для кибернетики [14—17]. [c.7]

    Практическое направление аналитической химии — служба аналитического контроля, существующая в большинстве лабораторий различных предприятий. Определение химического состава проводят стандартными методами, которые разработаны с использованием достижений химии, физики, техники, математики и кибернетики. [c.10]

    Исследование ХТС — расчет показателей, определение свойств (особенностей), изучение эволюции (развития, изменения) ХТС для улучшения ее показателей и свойств. На этом этапе применяют методы различных областей наук - кибернетики, топологии, факторного анализа, теорий информатики, игр, решений, катастроф. Большое значение здесь имеют эвристические решения, или эвристики - накопленный опыт исследования химических производств. Вспомните знаменитую историю о том, как Архимед нашел ответ на вопрос из [c.229]

    Исследование ХТС - расчет показателей, определение свойств (особенностей), изучение эволюции (развития, изменения) ХТС для улучшения ее показателей и свойств. Здесь используются принципы и методы различных областей науки -кибернетики, топологии, теорий информатики, игр, решений, катастроф, факторного анализа. Большое значение в исследовании сложных систем имеет накопленный опыт исследования химических производств - так называемые эвристические решения , или эвристики. [c.177]

    Мы смогли остановиться лишь на небольшой части встречаюш ихся здесь проблем и полученных интересных результатов. В частности, не было возможности упомянуть очень важный и интересный вопрос о механизмах регулирования катализаторами химического и пространственного строения продуктов реакции и тесно связанную с этим проблему общих и специфических механизмов осуществления кибернетических функций в гомогенном и гетерогенном катализе. Без существенного продвижения наших знаний о внутренней кибернетике катализа и о ее механизмах вряд ли возможны крупные успехи в предвидении катализаторов для новых типов сложных реакций. Предпосылки для такого предвидения имеются и заключаются они в следующем. Установлены определенные широкие качественные корреляции между электронно-физическими свойствами твердых тел и их каталитической активностью. Многое сделано для выяснения механизма модифицирования и развития теории приготовления катализаторов. Серьезные успехи достигнуты в кинетике каталитических процессов и в изучении их механизмов. Благотворное влияние оказывает развитие родственных гетерогенному катализу новых разделов гомогенного катализа. Быстро совершенствуется экспериментальная техника исследований. Поэтому, несмотря на отсутствие законченных обобщающих теорий катализа, уже сейчас имеется возможность решать экспериментальные задачи изыскания новых и улучшения известных катализаторов быстрее и эффективнее, чем раньше. В ряде случаев возможно и предвидение катализаторов для простейших реакций. [c.37]

    Изучение и получение количественных характеристик распределения компонентов экстракционной системы между двумя жидкими фазами является важнейшей составляющей исследования процесса экстракции в целом. Величина коэффициента распределения извлекаемого компонента в рабочем диапазоне концентрации служит одним из основных критериев выбора растворителя. Характеристики равновесного распределения определяют верхний предел эффективности разделения, достижимый при использовании исследуемой экстракционной системы. По мере усложнения практических задач, решаемых с использованием процесса жидкофазной экстракции, усиливался интерес исследователей к правильному пониманию поведения и точному количественному определению характеристик экстракционных систем. Этот процесс существенно интенсифицировался с проникновением в химию и химическую технологию математики и вычислительной техники — основных инструментов кибернетики. [c.133]

    Применительно к химической технологии успешно развиваютсЛ химическая кибернетика [1] и САПР, автоматизированные системы научных исследований и др. Рассматриваемый ниже подход дополняет эти направления и имеет целью создание основ разработки новых технологических процессов и аппаратов химической технологии в результате использования специально выбираемой и определенным образом упорядоченной совокупности физических воздействий. [c.8]


    Сущность эвристическо-декомпозиционного принципа синтеза ХТС состоит в том, что поиск оптимального решения ИЗС проводится упорядоченным перебором множества эвристических решений, которые получены при заданном числе попыток синтеза системы. При одной попытке получают некоторое эвристическое решение ИЗС на основе элементарной декомпозиции исходной задачи. Любая элементарная задача синтеза образуется в соответствии с выбранным эвристическим правилом (или эвристикой), входящим в определенный набор эвристик [4, 38, 39, 157]. Каждая эвристика — либо некоторое утверждение, являющееся результатом обобщения существующих научных знаний в области химии, физики, теоретических основ химической технологии и кибернетики химико-технологических процессов, либо некоторое интуитивное или эмпирическое предположение исследователя, которое хможет привести к рациональному решению задачи синтеза. [c.129]

    Бурное развитие биохимии, задачей которой является изучение химических превращений, происходящих в процессе жизнедеятельности организмов, способствует изучению обмена ветцеств и энергии автотрофиого зеленого растения иа субклеточном и молекулярном уровнях. Определенное влияние на развитие физиологии растений оказывает кибернетика, которая изучает процессы управления в различных системах (технике, экономике и живой природе). [c.6]


Смотреть страницы где упоминается термин Химическая кибернетика, определение: [c.39]    [c.8]    [c.11]    [c.4]    [c.234]    [c.234]   
Методы кибернетики в химии и химической технологии 1968 (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кибернетика

Кибернетика химическая

Химическая кибернетика, определение и задачи



© 2025 chem21.info Реклама на сайте